Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides

2012 ◽  
Vol 100 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Susanta Lahiri ◽  
Moumita Maiti
2018 ◽  
Vol 193 ◽  
pp. 04003
Author(s):  
A. Chietera ◽  
L. Thulliez ◽  
E. Berthoumieux ◽  
D. Doré ◽  
A. Letourneau ◽  
...  

The study of nuclear fission is encountering renewed interest with the development of GEN-IV reactor concepts, mostly working in the neutron fast energy domain. To support the fast reactor technologies, new high quality nuclear data are needed. New facilities are being constructed to produce high intensity neutron beams from hundreds of keV to few tens of MeV (Licorne, NFS, nELBE, ...). They will open new opportunities to provide nuclear data. In this framework the development of an experimental setup called FALSTAFF for a characterisation of actinide fission fragments has been undertaken. Fission fragment yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragment velocity and energy. The FALSTAFF setup and the upgrade of the first arm prototype with the new ionisation chamber CALIBER will be presented. The performances of the experimental apparatus is discussed.


2016 ◽  
Vol 111 ◽  
pp. 02001 ◽  
Author(s):  
Y. Danon ◽  
A. Daskalakis ◽  
B. McDermott ◽  
N. Thompson ◽  
A. Youmans ◽  
...  

1972 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
John V. Gilfrich

AbstractRecent developments in x-ray spectroscopy have shown that this technique is a very powerful tool for the analysis of small quantities of material. A distinction must be made here between microanalysis -the analysis for elemental composition of a small total amount of material - and trace analysis - the analysis of bulk material for the presence of certain elements at very low concentrations. By the use of chemical separation, a problem in trace analysis can be converted into a microanalytical situation. A major improvement in trace analysis has been achieved by the use of ion-exchange resin loaded onto filter paper to collect the element(s) of interest from a solution of the original sample. The analysis of these concentrates or of particulate matter filtered out of polluted air or water can be optimized because the total mass of the sample is small and the background due to scattered prirmary radiation can be minimized.Much interest has become manifest recently in the use of solid-state detectors for energy dispersion x-ray analysis of samples of this type. The value of energy dispersion can be demonstrated by improved detection limits for samples containing only a few widely separated elements. However, resolution of state-of-the-art solid-state detectors is not adequate to separate the Kβ of one element from the Kα of the next higher atomic number among the transition metals. Thus the presence of a large number of immediate neighbor elements at widely different concentrations as in pollution samples suggests the need for crystal spectrometers.


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
William Krakow ◽  
David A. Smith

Recent developments in specimen preparation, imaging and image analysis together permit the experimental determination of the atomic structure of certain, simple grain boundaries in metals such as gold. Single crystal, ∼125Å thick, (110) oriented gold films are vapor deposited onto ∼3000Å of epitaxial silver on (110) oriented cut and polished rock salt substrates. Bicrystal gold films are then made by first removing the silver coated substrate and placing in contact two suitably misoriented pieces of the gold film on a gold grid. Controlled heating in a hot stage first produces twist boundaries which then migrate, so reducing the grain boundary area, to give mixed boundaries and finally tilt boundaries perpendicular to the foil. These specimens are well suited to investigation by high resolution transmission electron microscopy.


Author(s):  
W.J. de Ruijter ◽  
P. Rez ◽  
David J. Smith

There is growing interest in the on-line use of computers in high-resolution electron n which should reduce the demands on highly skilled operators and thereby extend the r of the technique. An on-line computer could obviously perform routine procedures hand, or else facilitate automation of various restoration, reconstruction and enhan These techniques are slow and cumbersome at present because of the need for cai micrographs and off-line processing. In low resolution microscopy (most biologic; primary incentive for automation and computer image analysis is to create a instrument, with standard programmed procedures. In HREM (materials researc computer image analysis should lead to better utilization of the microscope. Instru (improved lens design and higher accelerating voltages) have improved the interpretab the level of atomic dimensions (approximately 1.6 Å) and instrumental resolutior should become feasible in the near future.


Sign in / Sign up

Export Citation Format

Share Document