Elastic, thermoelastic and piezoelastic properties of crystals of the KSCN family (KN3, KHF2, KSCN, NH4HF2, NH4SCN)

Author(s):  
S. Haussühl

AbstractLarge single crystals of KNElastic properties and thermal expansion reflect the close relationship to the CsCl-type structure. The anisotropy is mainly caused by the preferential orientation of the long axes of the anionic dumb-bells within one distinct plane. KSCN exhibits weak elastic anomalies approaching the phase transition at 413 K. These effects, which are much smaller than those found in the high-temperature phases of the alkali cyanides, indicate, together with the almost missing hysteresis and the small transition enthalpy, a transition of mainly second order. The variation of the elastic behaviour of KHF

Author(s):  
L. Wiehl ◽  
X.-Q. Liu ◽  
S. Haussühl

AbstractElastic constants and thermal expansion were measured using large single crystals of monoclinic Na


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3125
Author(s):  
Zhiying Zhang ◽  
Hongliang Yu ◽  
Xin Shen ◽  
Lei Sun ◽  
Shumin Yue ◽  
...  

Elastic properties are important mechanical properties which are dependent on the structure, and the coupling of ferroelasticity with ferroelectricity and ferromagnetism is vital for the development of multiferroic metal–organic frameworks (MOFs). The elastic properties and energy loss related to the disorder–order ferroelectric transition in [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DSC curves of [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] exhibited anomalies near 256 K and 264 K, respectively. The DMA results illustrated the minimum in the storage modulus and normalized storage modulus, and the maximum in the loss modulus, normalized loss modulus and loss factor near the ferroelectric transition temperatures of 256 K and 264 K, respectively. Much narrower peaks of loss modulus, normalized loss modulus and loss factor were observed in [(CH3)2NH2][Mg(HCOO)3] with the peak temperature independent of frequency, and the peak height was smaller at a higher frequency, indicating the features of first-order transition. Elastic anomalies and energy loss in [NH4][Mg(HCOO)3] near 256 K are due to the second-order paraelectric to ferroelectric phase transition triggered by the disorder–order transition of the ammonium cations and their displacement within the framework channels, accompanied by the structural phase transition from the non-polar hexagonal P6322 to polar hexagonal P63. Elastic anomalies and energy loss in [(CH3)2NH2][Mg(HCOO)3] near 264 K are due to the first-order paraelectric to ferroelectric phase transitions triggered by the disorder–order transitions of alkylammonium cations located in the framework cavities, accompanied by the structural phase transition from rhombohedral R3¯c to monoclinic Cc. The elastic anomalies in [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] showed strong coupling of ferroelasticity with ferroelectricity.


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Chao Jiang ◽  
Feifei Chen ◽  
Fapeng Yu ◽  
Shiwei Tian ◽  
Xiufeng Cheng ◽  
...  

A high-quality Ba2TiSi2O8 (BTS) single crystal was grown using the Czochralski (Cz) pulling method. The thermal expansion and electro-elastic properties of BTS crystal were studied for high temperature sensor applications. The relative dielectric permittivities ε 11 T / ε 0 and ε 33 T / ε 0 were determined to be 16.3 and 11.8, while the piezoelectric coefficients d15, d31, d33 were found to be 17.8, 2.9, and 4.0 pC/N, respectively. Temperature dependence of electro-elastic properties were investigated, where the variation of elastic compliance s 55 E (= s 44 E ) was found to be <6% over temperature range of 20–700 °C. Taking advantage of the anisotropic thermal expansion, linear thermal expansion comparable to insulating alumina ceramic was achieved over temperature range up to 650 °C. The optimum crystal cut with large effective piezoelectric coefficient (>8.5 pC/N) and linear thermal expansion coefficient (8.03 ppm/°C) achieved for BTS crystal along the (47°, φ) direction (φ is arbitrary in 0–360°), together with its good temperature stability up to 650 °C, make BTS crystal a promising candidate for high temperature piezoelectric sensors.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950271 ◽  
Author(s):  
Y. I. Aliyev ◽  
Y. G. Asadov ◽  
A. O. Dashdemirov ◽  
R. D. Aliyeva ◽  
T. G. Naghiyev ◽  
...  

The Ag[Formula: see text]Cu[Formula: see text]Se and Ag[Formula: see text]Cu[Formula: see text]Se compounds have been synthesized and grown as single crystals. High-temperature X-ray diffraction method was used to study polymorphic transformations. It is shown that the Ag[Formula: see text]Cu[Formula: see text]Se crystals of high-temperature FCC modification are decomposed into Ag2Se and AgCuSe when the temperature decreases below T = 488 K and Ag[Formula: see text]Cu[Formula: see text]Se is decomposed into Cu2Se and AgCuSe when the temperature decreases below T = 540 K. Transformations in both compounds are reversible. Crystalline parameters are obtained and the temperature dependence of the lattice parameters for each phase is built.


2000 ◽  
Vol 64 (2) ◽  
pp. 291-300 ◽  
Author(s):  
K. S. Knight

AbstractHigh-resolution, neutron time-of-flight, powder diffraction data have been collected on natural crocoite between 873 and 1073 K. Thermal analysis carried out in the 1920s had suggested that chemically pure PbCrO4 exhibited two structural phase transitions, at 964 K, to the β phase, and at 1056 K, to the γ phase. In this study, no evidence was found for the α-β structural phase transition, however a high-temperature phase transition was found at ∼1068 K from the ambient-temperature monazite structure type to the baryte structure type. The phase transition, close to the temperatures reported for the β to γ phase modifications, is first order and is accompanied by a change in volume of −1.6%. The crystal structure of this phase has been refined using the Rietveld method to agreement factors of Rp = 0.018, Rwp = 0.019, Rp = 0.011. No evidence for premonitory behaviour was found in the temperature dependence of the monoclinic lattice constants rom 873 K to 1063 K and these have been used to determine the thermal expansion tensor of crocoite just below the phase transition. At 1000 K the magnitudes of the tensor coefficients are α11, 2.66(1) × 10−5 K−1; α22, 2.04(1) × 10−5 K−1; α33, 4.67(4) × 10−5 K−1; and α13, −1.80(2) × 10−5 K−1 using the IRE convention for the orientation of the tensor basis. The orientation of the principal axes of the thermal expansion tensor are very close to those reported previously for the temperature range 50–300 K.


Author(s):  
Aleksey Marchenko ◽  
Ben Lishman

A model of the thermo-elastic behaviour of saline ice is formulated, and model solutions describing thermo-elastic waves (TEW) propagating into a half-space of the ice are investigated. The model is based on a proposal that saline ice is a matrix, which encompasses both closed brine pockets and permeable channels filled with brine. Experiments on the thermal expansion of saline ice samples, and on TEW in saline ice, have been performed in the cold laboratories of the University Centre in Svalbard and in University College London. The experimental data are compared with theoretical conclusions. The experimental data support our hypothesis that the brine in saline ice is divided between closed pockets and open, permeable channels. This article is part of the themed issue ‘Microdynamics of ice’.


Author(s):  
S. Haussühl ◽  
F. Wallrafen ◽  
K. Recker ◽  
J. Eckstein

AbstractSingle crystals of orthorhombic Li


1991 ◽  
Vol 185-189 ◽  
pp. 1827-1828
Author(s):  
S.K. Japaridze ◽  
T.Sh. Kvirickashvili ◽  
V.A. Melik-Shahchnazarov ◽  
I.I. Mirsoeva ◽  
I.N. Makarenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document