scholarly journals Evaluation of Genotoxicity of Lufenuron and Chlorfluazuron Insecticides in Drosophila melanogaster Using a Germ-Line Cell Aneuploidy and Chromosomal Aberrations Test

1993 ◽  
Vol 13 (3) ◽  
pp. 1708-1718 ◽  
Author(s):  
M Schäfer ◽  
D Börsch ◽  
A Hülster ◽  
U Schäfer

We have analyzed a locus of Drosophila melanogaster located at 98C on chromosome 3, which contains two tandemly arranged genes, named Mst98Ca and Mst98Cb. They are two additional members of the Mst(3)CGP gene family by three criteria. (i) Both genes are exclusively transcribed in the male germ line. (ii) Both transcripts encode a protein with a high proportion of the repetitive motif Cys-Gly-Pro. (iii) Their expression is translationally controlled; while transcripts can be detected in diploid stages of spermatogenesis, association with polysomes can be shown only in haploid stages of sperm development. The genes differ markedly from the other members of the gene family in structure; they do not contain introns, they are of much larger size, and they have the Cys-Gly-Pro motifs clustered at the carboxy-terminal end of the encoded proteins. An antibody generated against the Mst98Ca protein recognizes both Mst98C proteins in D. melanogaster. In a male-sterile mutation in which spermiogenesis is blocked before individualization of sperm, both of these proteins are no longer synthesized. This finding provides proof of late translation for the Mst98C proteins and thereby independent proof of translational control of expression. Northern (RNA) and Western immunoblot analyses indicate the presence of homologous gene families in many other Drosophila species. The Mst98C proteins share sequence homology with proteins of the outer dense fibers in mammalian spermatozoa and can be localized to the sperm tail by immunofluorescence with an anti-Mst98Ca antibody.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 293-308 ◽  
Author(s):  
S R Russell ◽  
K Kaiser

Abstract We have identified of set of related transcripts expressed in the germ line of male Drosophila melanogaster. Surprisingly, while one of the corresponding genes is autosomal the remainder are located on the Y chromosome. The autosomal locus, at 77F on chromosome arm 3L, corresponds to the previously described transcription unit 18c, located in the first intron of the gene for an RI subunit of cAMP-dependent protein kinase. The Y chromosome copies have been mapped to region h18-h19 on the cytogenetic map of the Y outside of any of the regions required for male fertility. In contrast to D. melanogaster, where Y-linked copies were found in nine different wild-type strains, no Y-linked copies were found in sibling species. Several apparently Y-derived cDNA clones and one Y-linked genomic clone have been sequenced. The Y-derived genomic DNA shares the same intron/exon structure as the autosomal copy as well as related flanking sequences suggesting that it transposed to the Y from the autosomal locus. However, this particular Y-linked copy cannot encode a functional polypeptide due to a stop codon at amino acid position 72. Divergence among five different cDNA clones ranges from 1.5 to 6% and includes a large number of third position substitutions. We have not yet obtained a full-length cDNA from a Y-linked gene and therefore cannot conclude that the D. melanogaster Y chromosome contains functional protein-coding genes. The autosomal gene encodes a predicted polypeptide with 45% similarity to histones of the H5 class and more limited similarity to cysteine-rich protamines. This protein may be a distant relative of the histone H1 family perhaps involved in sperm chromatin condensation.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


2018 ◽  
Vol 44 (2) ◽  
pp. 717-733 ◽  
Author(s):  
Mei Shang ◽  
Baofeng Su ◽  
Dayan A. Perera ◽  
Ahmed Alsaqufi ◽  
Elizabeth A. Lipke ◽  
...  

Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 813-816 ◽  
Author(s):  
B. Granadino ◽  
P. Santamaria ◽  
L. Sanchez

The germ line exhibits sexual dimorphism as do the somatic tissues. Cells with the 2X;2A chromosome constitution will follow the oogenic pathway and X;2A cells will develop into sperm. In both somatic and germ-line tissues, the sexual pathway chosen by the cells depends on the gene Sex-lethal (Sxl), whose function is continuously needed for female development. In the soma, the sex of the cells is autonomously determined by the X:A signal while, in the germ line, the sex is determined by cell autonomous (the X:A signal) and somatic inductive signals. Three X-linked genes have been identified, scute (sc), sisterless-a (sis-a) and runt (run), that determine the initial functional state of Sxl in the soma. Using pole cell transplantation, we have tested whether these genes are also needed to activate Sxl in the germ line. We found that germ cells simultaneously heterozygous for sc, sis-a, run and a deficiency for Sxl transplanted into wild-type female hosts develop into functional oocytes. We conclude that the genes sc, sis-a and run needed to activate Sxl in the soma seem not to be required to activate this gene in the germ line; therefore, the X:A signal would be made up by different genes in somatic and germ-line tissues. The Sxlf7M1/Sxlfc females do not have developed ovaries. We have shown that germ cells of this genotype transplanted into wild-type female hosts produce functional oocytes. We conclude that the somatic component of the gonads in Sxlf7M1/Sxlfc females is affected, and consequently germ cells do not develop.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 13 (3) ◽  
pp. 1708-1718
Author(s):  
M Schäfer ◽  
D Börsch ◽  
A Hülster ◽  
U Schäfer

We have analyzed a locus of Drosophila melanogaster located at 98C on chromosome 3, which contains two tandemly arranged genes, named Mst98Ca and Mst98Cb. They are two additional members of the Mst(3)CGP gene family by three criteria. (i) Both genes are exclusively transcribed in the male germ line. (ii) Both transcripts encode a protein with a high proportion of the repetitive motif Cys-Gly-Pro. (iii) Their expression is translationally controlled; while transcripts can be detected in diploid stages of spermatogenesis, association with polysomes can be shown only in haploid stages of sperm development. The genes differ markedly from the other members of the gene family in structure; they do not contain introns, they are of much larger size, and they have the Cys-Gly-Pro motifs clustered at the carboxy-terminal end of the encoded proteins. An antibody generated against the Mst98Ca protein recognizes both Mst98C proteins in D. melanogaster. In a male-sterile mutation in which spermiogenesis is blocked before individualization of sperm, both of these proteins are no longer synthesized. This finding provides proof of late translation for the Mst98C proteins and thereby independent proof of translational control of expression. Northern (RNA) and Western immunoblot analyses indicate the presence of homologous gene families in many other Drosophila species. The Mst98C proteins share sequence homology with proteins of the outer dense fibers in mammalian spermatozoa and can be localized to the sperm tail by immunofluorescence with an anti-Mst98Ca antibody.


Sign in / Sign up

Export Citation Format

Share Document