Sex determination in the germ line of Drosophila melanogaster: activation of the gene Sex-lethal

Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 813-816 ◽  
Author(s):  
B. Granadino ◽  
P. Santamaria ◽  
L. Sanchez

The germ line exhibits sexual dimorphism as do the somatic tissues. Cells with the 2X;2A chromosome constitution will follow the oogenic pathway and X;2A cells will develop into sperm. In both somatic and germ-line tissues, the sexual pathway chosen by the cells depends on the gene Sex-lethal (Sxl), whose function is continuously needed for female development. In the soma, the sex of the cells is autonomously determined by the X:A signal while, in the germ line, the sex is determined by cell autonomous (the X:A signal) and somatic inductive signals. Three X-linked genes have been identified, scute (sc), sisterless-a (sis-a) and runt (run), that determine the initial functional state of Sxl in the soma. Using pole cell transplantation, we have tested whether these genes are also needed to activate Sxl in the germ line. We found that germ cells simultaneously heterozygous for sc, sis-a, run and a deficiency for Sxl transplanted into wild-type female hosts develop into functional oocytes. We conclude that the genes sc, sis-a and run needed to activate Sxl in the soma seem not to be required to activate this gene in the germ line; therefore, the X:A signal would be made up by different genes in somatic and germ-line tissues. The Sxlf7M1/Sxlfc females do not have developed ovaries. We have shown that germ cells of this genotype transplanted into wild-type female hosts produce functional oocytes. We conclude that the somatic component of the gonads in Sxlf7M1/Sxlfc females is affected, and consequently germ cells do not develop.(ABSTRACT TRUNCATED AT 250 WORDS)

Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 535-550 ◽  
Author(s):  
B Oliver ◽  
D Pauli ◽  
A P Mahowald

Abstract Zygotically contributed ovo gene product is required for the survival of female germ cells in Drosophila melanogaster. Trans-allelic combinations of weak and dominant ovo mutations (ovoD) result in viable germ cells that appear to be partially transformed from female to male sexual identity. The ovoD2 mutation is partially suppressed by many Sex-lethal alleles that affect the soma, while those that affect only the germ line fail to interact with ovoD2. One of two loss-of-function ovo alleles is suppressed by a loss-of-function Sex-lethal allele. Because ovo mutations are germ line dependent, it is likely that ovo is suppressed by way of communication between the somatic and germ lines. A loss-of-function allele of ovo is epistatic to germ line dependent mutations in Sex-lethal. The germ line dependent sex determination mutation, sans fille, and ovoD mutations show a dominant synergistic interaction resulting in partial transformation of germ line sexual identity. The ovo locus appears to be involved in germ line sex determination and is linked in some manner to sex determination in the soma.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 797-812 ◽  
Author(s):  
D. Bopp ◽  
J.I. Horabin ◽  
R.A. Lersch ◽  
T.W. Cline ◽  
P. Schedl

In addition to controlling somatic sexual development in Drosophila melanogaster, the Sex-lethal (Sxl) gene is required for proper differentiation of female germ cells. To investigate its role in germ-line development, we have examined the expression of Sxl in wild-type ovaries and ovaries that are defective in early steps of germ cell differentiation. As in the soma, the basic mechanism for on/off regulation of Sxl relies on sex-specific processing of its transcripts in germ cells. One class of female-sterile mutations, which includes fs(1)1621 and the tumorous-ovary-producing allele of the ovarian tumor gene, otu1, is defective in the splicing process. These mutants have germ lines with high amounts of Sxl RNA spliced in the male mode and a severe reduction of protein levels in the germ cells. Another class of female-sterile mutations produces a phenotype similar to that seen in fs(1)1621 and otu1 but appears to express normal levels of Sxl protein in the germ cells. However, this second class does not show the changes in protein distribution normally observed in wild-type germ cells. In the wild-type germarium, the non-differentiated germ cells show a strong cytoplasmic accumulation of Sxl protein followed, as the germ cells differentiate, by a dramatic reduction and redistribution of the protein into nuclear foci. Interestingly, two female-sterile alleles of Sxl, Sxlf4 and Sxlf5 belong to the second class, which shows persistent cytoplasmic accumulation of Sxl protein. These Sxl female-sterile mutants encode an altered protein indicating that Sxl regulates processes that eventually lead to the changes in Sxl protein distribution. Lastly, we demonstrate that during the final stages of oogenesis several mechanisms must operate to prevent the progeny from inheriting Sxl protein. Conceivably, this regulation safeguards the inadvertent activation of the Sxl autoregulatory feedback loop in the male zygote.


Development ◽  
1977 ◽  
Vol 37 (1) ◽  
pp. 173-185 ◽  
Author(s):  
E. B. van Deusen

Of 55 flies developing from blastoderms which had received male or female pole cell transplants, 15 (7 females and 8 males) were shown by progeny testing to be germ line chimeras. Since donor and host pole cells were genetically marked with contrasting X- or Y-linked alleles, the progeny testing scheme enabled the genotypic sex of the donor component undergoing gametogenesis to be identified as either the same as (‘homosexual’ chimeras) or opposite (‘heterosexual’ chimeras) that of the host. All seven of the female chimeras were identified as ‘homosexual’ chimeras carrying only chromosomally female donor and XX host germ cells. Similarly, all eight males were shown to be ‘homosexual’ chimeras with chromosomally male XY donor and XY host germ cells. The chromosomal sex of the donor component undergoing gametogenesis was in every case the same as the phenotypic sex of the host. Since there is an equal probability of constructing either a ‘homosexual’ or a ‘heterosexual’ chimera during pole cell transplantation, the ability of pole cells to differentiate functional gametes in hosts of the opposite sex was tested 50 % of the time even if sex reversal of these donor pole cells could not be demonstrated. Thus the absence of ‘heterosexual’ chimerism strongly supports the interpretation that the phenotypic sex of a germ cell in Drosophila is determined entirely by its own chromosome constitution, not by that of the gonadal mesoderm.


Development ◽  
1999 ◽  
Vol 126 (23) ◽  
pp. 5295-5307 ◽  
Author(s):  
G. Weidinger ◽  
U. Wolke ◽  
M. Koprunner ◽  
M. Klinger ◽  
E. Raz

In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 763-767 ◽  
Author(s):  
M. Steinmann-Zwicky

In soma and germ cells of Drosophila, the X:A ratio builds a primary signal for sex determination, and in both tissues Sex-lethal (Sxl) function is required for cells to enter the female pathway. In somatic cells of XX animals, the products of X-chromosomal elements of the X:A ratio activate Sxl. Here I show that sisterless-b (sis-b), which is the X-chromosomal element of the somatic X:A ratio that has best been analysed, is not required for oogenesis. I also present evidence that Sxl function might not be sufficient to direct germ cells into the female pathway. These results show that the elements forming the X:A ratio in the germ line are different from the elements forming the X:A ratio in the soma and they suggest that, in the germ line, Sxl might not be regulated by the X:A ratio.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 29-39 ◽  
Author(s):  
M K Barton ◽  
J Kimble

Abstract In wild-type Caenorhabditis elegans, the XO male germ line makes only sperm and the XX hermaphrodite germ line makes sperm and then oocytes. In contrast, the germ line of either a male or a hermaphrodite carrying a mutation of the fog-1 (feminization of the germ line) locus is sexually transformed: cells that would normally make sperm differentiate as oocytes. However, the somatic tissues of fog-1 mutants remain unaffected. All fog-1 alleles identified confer the same phenotype. The fog-1 mutations appear to reduce fog-1 function, indicating that the wild-type fog-1 product is required for specification of a germ cell as a spermatocyte. Two lines of evidence indicate that a germ cell is determined for sex at about the same time that it enters meiosis. These include the fog-1 temperature sensitive period, which coincides in each sex with first entry into meiosis, and the phenotype of a fog-1; glp-1 double mutant. Experiments with double mutants show that fog-1 is epistatic to mutations in all other sex-determining genes tested. These results lead to the conclusion that fog-1 acts at the same level as the fem genes at the end of the sex determination pathway to specify germ cells as sperm.


Genetics ◽  
1988 ◽  
Vol 120 (1) ◽  
pp. 159-171
Author(s):  
B Oliver ◽  
N Perrimon ◽  
A P Mahowald

Abstract Females homozygous for sans fille1621 (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille1621 or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille1621 and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability.


2004 ◽  
Vol 167 (4) ◽  
pp. 673-686 ◽  
Author(s):  
Brian McHugh ◽  
Sue A. Krause ◽  
Bin Yu ◽  
Anne-Marie Deans ◽  
Sarah Heasman ◽  
...  

The cell cycle is widely known to be regulated by networks of phosphorylation and ubiquitin-directed proteolysis. Here, we describe IX-14/invadolysin, a novel metalloprotease present only in metazoa, whose activity appears to be essential for mitotic progression. Mitotic neuroblasts of Drosophila melanogaster IX-14 mutant larvae exhibit increased levels of nuclear envelope proteins, monopolar and asymmetric spindles, and chromosomes that appear hypercondensed in length with a surrounding halo of loosely condensed chromatin. Zymography reveals that a protease activity, present in wild-type larval brains, is missing from homozygous tissue, and we show that IX-14/invadolysin cleaves lamin in vitro. The IX-14/invadolysin protein is predominantly found in cytoplasmic structures resembling invadopodia in fly and human cells, but is dramatically relocalized to the leading edge of migrating cells. Strikingly, we find that the directed migration of germ cells is affected in Drosophila IX-14 mutant embryos. Thus, invadolysin identifies a new family of conserved metalloproteases whose activity appears to be essential for the coordination of mitotic progression, but which also plays an unexpected role in cell migration.


1981 ◽  
Vol 36 (5-6) ◽  
pp. 475-483 ◽  
Author(s):  
Robert Cook

Abstract Both male and female Drosophila melanogaster possess systems which enable them to track other walking flies visually. Males use this system predominantly in courtship; females, when of sufficient age but still unmated, have been observed to track other flies, at rates of up to 18 bouts per hour. This behaviour is most conveniently studied in groups of females. Although similar to the courtship tracking of males, fem ale/female tracking lacks the “circling” component of courtship. The data suggest a functional relationship of female/female tracking to reproductive behaviour, although none has yet been identified. Bouts of tracking by females are most frequently terminated by the following female, especially when the target female remains motionless. Comparison of the tracking parameters of males and females has revealed differences in the velocity and pathlength of tracking bouts, and in the position of the fly with respect to the target. Males of Canton and Kapelle strains differ in the translatory component of their courtship tracking, but such a difference was not evident between females of these strains. Furthermore, tracking females do not allow their distance to the target to rise to that permissible in males, which suggests some sex-specificity in a part of the control system for tracking.


1991 ◽  
Vol 57 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Claude Bazin ◽  
Françoise Lemeunier ◽  
Georges Periquet ◽  
Joël Silber

SummaryWe describe herein, a new unstable mutant of the vestigial locus, isolated from a French natural population. From this mutant vestigialalmost (vgal) wild-type flies (vgal+) and extreme vg phenotypes (vge) arose spontaneously without genomic shock. The occurrence of vgal+ or vge alleles depends mostly on the breeding temperature; vgal+ revertants arose principally at low temperature (21 °C) and vge at 28 °C. These events occur mainly in the male germ line and the phenomenon appears to be premeiotic. Our results with in situ hybridization experiments and Southern blots show that the vgal mutation is due to a 2 kb DNA insertion, which is a deleted hobo element. Genetic and molecular analyses show that two distinct events may underly the wild-type revertants. One is the excision of the resident hobo element, the other a further deletion (about 300 bp in the example characterized herein). The vge mutation is probably due to a deletion of vestigial sequences flanking the hobo insertion.


Sign in / Sign up

Export Citation Format

Share Document