New Missionaries

2014 ◽  
Vol 4 (4) ◽  
pp. 54-63
Author(s):  
Marc Flacks

Featuring a wide cast of players, from small-scale family-owned operations to large corporate enterprises, Flacks reports on contemporary olive oil production in California, presenting historical information, photos, and legislative testimony. Recent efforts to establish a mature California olive industry and standards, including those of the UC Davis Olive Center, the California Olive Oil Council, and state Senator Lois Wolk are described. The involvement of Spaniards in California olive oil production, from the earliest days of the state’s history, to current efforts to expand super high density olive groves, is highlighted. 

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 671
Author(s):  
Adnan Khdair ◽  
Ghaida Abu-Rumman

Cultivation of olive trees and olive oil production have been considered as a legacy for the Mediterranean region. This custom represents a very important benefit for many nations in terms of wealth and health. However, huge amounts of by-products and waste are generated during olive oil production. This represents a serious environmental impact on land and water bodies if not properly handled. Olive oil extraction generates two waste streams, a solid waste called pomace and olive mill wastewater (OMWW), which has been considered as highly pollutant and phytotoxic waste. These wastes have high disposal costs and predominantly generated from small-scale enterprises that have limited financial resources to treat them properly before discharge to the environment. Besides being a serious environmental problem, OMWW has potential economic value that remains to be utilized such as: fertilizers, valuable antioxidants agents and fatty acids needed in human diet. Also, Olive pomace is a valuable renewable energy source with an energy density of 23 MJ/kg and has become an inexpensive alternative for fossil fuels. Aiming at adding value to the olive production sectors and potential valorization options for byproducts in the MENA region, international practices applied in olive mills wastes management’s and treatment methods used in major oil producing countries are presented.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
María de la Luz Cádiz-Gurrea ◽  
Diana Pinto ◽  
Cristina Delerue-Matos ◽  
Francisca Rodrigues

Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.


Author(s):  
José Guerrero-Casado ◽  
Antonio J. Carpio ◽  
Francisco S. Tortosa ◽  
Anastasio J. Villanueva

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2235
Author(s):  
Alyann Otrante ◽  
Amal Trigui ◽  
Roua Walha ◽  
Hicham Berrougui ◽  
Tamas Fulop ◽  
...  

High-density lipoproteins (HDL) maintain cholesterol homeostasis through the role they play in regulating reverse cholesterol transport (RCT), a process by which excess cholesterol is transported back to the liver for elimination. However, RCT can be altered in the presence of cardiovascular risk factors, such as aging, which contributes to the increase in the incidence of cardiovascular diseases (CVD). The present study was aimed at investigating the effect of extra virgin olive oil (EVOO) intake on the cholesterol efflux capacity (CEC) of HDL, and to elucidate on the mechanisms by which EVOO intake improves the anti-atherogenic activity of HDL. A total of 84 healthy women and men were enrolled and were distributed, according to age, into two groups: 27 young (31.81 ± 6.79 years) and 57 elderly (70.72 ± 5.6 years) subjects. The subjects in both groups were given 25 mL/d of extra virgin olive oil (EVOO) for 12 weeks. CEC was measured using J774 macrophages radiolabeled with tritiated cholesterol ((3H) cholesterol). HDL subclass distributions were analyzed using the Quantimetrix Lipoprint® system. The HDL from the elderly subjects exhibited a lower level of CEC, at 11.12% (p < 0.0001), than the HDL from the young subjects. The CEC of the elderly subjects returned to normal levels following 12 weeks of EVOO intake. An analysis of the distribution of HDL subclasses showed that HDL from the elderly subjects were composed of lower levels of large HDL (L-HDL) (p < 0.03) and higher levels of small HDL (S-HDL) (p < 0.002) compared to HDL from the young subjects. A multiple linear regression analysis revealed a positive correlation between CEC and L-HDL levels (r = 0.35 and p < 0.001) as well as an inverse correlation between CEC and S-HDL levels (r = −0.27 and p < 0.01). This correlation remained significant even when several variables, including age, sex, and BMI as well as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glucose levels (β = 0.28, p < 0.002, and β = 0.24, p = 0.01) were accounted for. Consuming EVOO for 12 weeks modulated the age-related difference in the distribution of HDL subclasses by reducing the level of S-HDL and increasing the level of intermediate-HDL/large-HDL (I-HDL/L-HDL) in the elderly subjects. The age-related alteration of the CEC of HDL was due, in part, to an alteration in the distribution of HDL subclasses. A diet enriched in EVOO improved the functionality of HDL through an increase in I-HDL/L-HDL and a decrease in S-HDL.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 598
Author(s):  
Graziana Difonzo ◽  
Antonella Aresta ◽  
Pietro Cotugno ◽  
Roberta Ragni ◽  
Giacomo Squeo ◽  
...  

Olive pomace is a semisolid by-product of olive oil production and represents a valuable source of functional phytocompounds. The valorization of agro-food chain by-products represents a key factor in reducing production costs, providing benefits related to their reuse. On this ground, we herein investigate extraction methods with supercritical carbon dioxide (SC-CO2) of functional phytocompounds from olive pomace samples subjected to two different drying methods, i.e., freeze drying and hot-air drying. Olive pomace was produced using the two most common industrial olive oil production processes, one based on the two-phase (2P) decanter and one based on the three-phase (3P) decanter. Our results show that freeze drying more efficiently preserves phytocompounds such as α-tocopherol, carotenoids, chlorophylls, and polyphenols, whereas hot-air drying does not compromise the β-sitosterol content and the extraction of squalene is not dependent on the drying method used. Moreover, higher amounts of α-tocopherol and polyphenols were extracted from 2P olive pomace, while β-sitosterol, chlorophylls, and carotenoids were more concentrated in 3P olive pomace. Finally, tocopherol and pigment/polyphenol fractions exerted antioxidant activity in vitro and in accelerated oxidative conditions. These results highlight the potential of olive pomace to be upcycled by extracting from it, with green methods, functional phytocompounds for reuse in food and pharmaceutical industries.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Antonis A. Zorpas ◽  
Vassilis J. Inglezakis

The annual olive oil production in Cyprus is in the range of 2700–3100 t y−1, resulting in the generation of significant amount of waste. The cocomposting of the olive oil solid residue (OOSR) and the treated wastewaters (with Fenton) from the olive oil production process with the application of reed beds has been studied as an integrated method for the treatment of wastewater containing high organic and toxic pollutants under warm climate conditions. The experimental results indicated that the olive mill wastewater (OMW) is detoxified at the end of the Fenton process. Specifically, COD is reduced up to 65% (minimum 54.32%) by the application of Fenton and another 10–28% by the application of red beds as a third stage. The final cocomposted material of OOSR with the treated olive mile wastewater (TOMW) presents optimum characteristics and is suitable for agricultural purpose.


Sign in / Sign up

Export Citation Format

Share Document