scholarly journals Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf

Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Andrew C. Thomas ◽  
Andrew J. Pershing ◽  
Kevin D. Friedland ◽  
Janet A. Nye ◽  
Katherine E. Mills ◽  
...  

The northeastern North American continental shelf from Cape Hatteras to the Scotian Shelf is a region of globally extreme positive trends in sea surface temperature (SST). Here, a 33-year (1982–2014) time series of daily satellite SST data was used to quantify and map spatial patterns in SST trends and phenology over this shelf. Strongest trends are over the Scotian Shelf (>0.6°C decade–1) and Gulf of Maine (>0.4°C decade–1) with weaker trends over the inner Mid-Atlantic Bight (~0.3°C decade–1). Winter (January–April) trends are relatively weak, and even negative in some areas; early summer (May–June) trends are positive everywhere, and later summer (July–September) trends are strongest (~1.0°C decade–1). These seasonal differences shift the phenology of many metrics of the SST cycle. The yearday on which specific temperature thresholds (8° and 12°C) are reached in spring trends earlier, most strongly over the Scotian Shelf and Gulf of Maine (~ –0.5 days year–1). Three metrics defining the warmest summer period show significant trends towards earlier summer starts, later summer ends and longer summer duration over the entire study region. Trends in start and end dates are strongest (~1 day year–1) over the Gulf of Maine and Scotian Shelf. Trends in increased summer duration are >2.0 days year–1 in parts of the Gulf of Maine. Regression analyses show that phenology trends have regionally varying links to the North Atlantic Oscillation, to local spring and summer atmospheric pressure and air temperature and to Gulf Stream position. For effective monitoring and management of dynamically heterogeneous shelf regions, the results highlight the need to quantify spatial and seasonal differences in SST trends as well as trends in SST phenology, each of which likely has implications for the ecological functioning of the shelf.

2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


2003 ◽  
Vol 30 (2) ◽  
Author(s):  
Zong-Liang Yang ◽  
Dave Gochis ◽  
William James Shuttleworth ◽  
Guo-Yue Niu

2021 ◽  
Author(s):  
Moira Luz Clara ◽  
Mariano S. Alvarez ◽  
Carolina Vera ◽  
Claudia G. Simionato ◽  
Andrés J. Jaureguizar

Abstract The intraseasonal (IS) variability of the sea surface temperature (SST) in the Southwestern Atlantic Northern Argentinean Continental Shelf (SWACS NACS, 45-33°S - 70-50°W), and its relationship with that in the atmosphere, was studied for the austral warm season. SST satellite data (11-km resolution NOAA CoastWatch Program) and data of different atmospheric variables (Reanalysis1 NCEP/NCAR and ERA-Interim) were used. Data were filtered using a 10-90day filter to isolate the IS variability. A Principal Component analysis was applied then to the filtered SST anomalies (SSTA) and the activity of the leading modes was described through the corresponding temporal series. The first three modes are significant. EOF1 (25.7% of variance) exhibits SSTA of opposite sign to the north/south of 42°S. EOF2 (9.0%) and EOF3 (5.1%) are related with centers of SSTA of opposite sign located off the Uruguayan coast and in the middle shelf. Composites of SSTA and of key atmospheric variables were made considering the days in which the main modes were active. They show that the SSTA described by the three modes are associated with distinctive regional sea level pressure anomalies that, in turn, seem to be related to atmospheric Rossby wave trains extending from the Australia area towards South America. The corresponding atmospheric wave sources vary depending on the mode. These results show, therefore, that the SSTA in the SWACS NACS exhibit significant IS variability that is, in part, locally and remotely influenced by atmospheric anomalies oscillating on similar timescales. These ocean-atmosphere teleconnections could help to improve ocean predictability at those timescales in the future.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


Author(s):  
M. A. Syariz ◽  
L. M. Jaelani ◽  
L. Subehi ◽  
A. Pamungkas ◽  
E. S. Koenhardono ◽  
...  

The Sea Surface Temperature (SST) retrieval from satellites data Thus, it could provide SST data for a long time. Since, the algorithms of SST estimation by using Landsat 8 Thermal Band are sitedependence, we need to develop an applicable algorithm in Indonesian water. The aim of this research was to develop SST algorithms in the North Java Island Water. The data used are in-situ data measured on April 22, 2015 and also estimated brightness temperature data from Landsat 8 Thermal Band Image (band 10 and band 11). The algorithm was established using 45 data by assessing the relation of measured in-situ data and estimated brightness temperature. Then, the algorithm was validated by using another 40 points. The results showed that the good performance of the sea surface temperature algorithm with coefficient of determination (<i>R</i><sup>2</sup>) and Root Mean Square Error (<i>RMSE</i>) of 0.912 and 0.028, respectively.


Sign in / Sign up

Export Citation Format

Share Document