scholarly journals FAM111A induces nuclear dysfunction in disease and viral restriction

EMBO Reports ◽  
2020 ◽  
Author(s):  
Minghua Nie ◽  
Martina Oravcová ◽  
Yasaman Jami‐Alahmadi ◽  
James A Wohlschlegel ◽  
Eros Lazzerini‐Denchi ◽  
...  
Keyword(s):  
2020 ◽  
Vol 295 (13) ◽  
pp. 4252-4264 ◽  
Author(s):  
Chu Wang ◽  
Kaikai Zhang ◽  
Lina Meng ◽  
Xin Zhang ◽  
Yanan Song ◽  
...  

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charlotte Martinat ◽  
Arthur Cormier ◽  
Joëlle Tobaly-Tapiero ◽  
Noé Palmic ◽  
Nicoletta Casartelli ◽  
...  

AbstractSAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic T592E mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.


2018 ◽  
Vol 9 ◽  
Author(s):  
Marta Colomer-Lluch ◽  
Alba Ruiz ◽  
Arnaud Moris ◽  
Julia G. Prado

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alfonso González de Prádena ◽  
Adrián Sánchez Jimenez ◽  
David San León ◽  
Peter Simmonds ◽  
Juan Antonio García ◽  
...  

ABSTRACT The presence of CpG and UpA dinucleotides is restricted in the genomes of animal RNA viruses to avoid specific host defenses. We wondered whether a similar phenomenon exists in nonanimal RNA viruses. Here, we show that these two dinucleotides, especially UpA, are underrepresented in the family Potyviridae, the most important group of plant RNA viruses. Using plum pox virus (PPV; Potyviridae family) as a model, we show that an increase in UpA frequency strongly diminishes virus accumulation. Remarkably, unlike previous observations in animal viruses, PPV variants harboring CpG-rich fragments display just faint (or no) attenuation. The anticorrelation between UpA frequency and viral fitness additionally demonstrates the relevance of this particular dinucleotide: UpA-high mutants are attenuated in a dose-dependent manner, whereas a UpA-low variant displays better fitness than its parental control. Using high-throughput sequencing, we also show that UpA-rich PPV variants are genetically stable, without apparent changes in sequence that revert and/or compensate for the dinucleotide modification despite its attenuation. In addition, we also demonstrate here that the PPV restriction of UpA-rich variants works independently of the classical RNA silencing pathway. Finally, we show that the anticorrelation between UpA frequency and RNA accumulation applies to mRNA-like fragments produced by the host RNA polymerase II. Together, our results inform us about a dinucleotide-based system in plant cells that controls diverse RNAs, including RNA viruses. IMPORTANCE Dinucleotides (combinations of two consecutive nucleotides) are not randomly present in RNA viruses; in fact, the presence of CpG and UpA is significantly repressed in their genomes. Although the meaning of this phenomenon remains obscure, recent studies with animal-infecting viruses have revealed that their low CpG/UpA frequency prevents virus restriction via a host antiviral system that recognizes, and promotes the degradation of, CpG/UpA-rich RNAs. Whether similar systems act in organisms from other life kingdoms has been unknown. To fill this gap in our knowledge, we built several synthetic variants of a plant RNA virus with deoptimized dinucleotide frequencies and analyzed their viral fitness and genome adaptation. In brief, our results inform us for the first time about an effective dinucleotide-based system that acts in plants against viruses. Remarkably, this viral restriction in plants is reminiscent of, but not identical to, the equivalent antiviral response in animals.


Author(s):  
Zachary K Barth ◽  
Tania V Silvas ◽  
Angus Angermeyer ◽  
Kimberley D Seed

Abstract Phage-inducible chromosomal island-like elements (PLEs) are bacteriophage satellites found in Vibrio cholerae. PLEs parasitize the lytic phage ICP1, excising from the bacterial chromosome, replicating, and mobilizing to new host cells following cell lysis. PLEs protect their host cell populations by completely restricting the production of ICP1 progeny. Previously, it was found that ICP1 replication was reduced during PLE(+) infection. Despite robust replication of the PLE genome, relatively few transducing units are produced. We investigated if PLE DNA replication itself is antagonistic to ICP1 replication. Here we identify key constituents of PLE replication and assess their role in interference of ICP1. PLE encodes a RepA_N initiation factor that is sufficient to drive replication from the PLE origin of replication during ICP1 infection. In contrast to previously characterized bacteriophage satellites, expression of the PLE initiation factor was not sufficient for PLE replication in the absence of phage. Replication of PLE was necessary for interference of ICP1 DNA replication, but replication of a minimalized PLE replicon was not sufficient for ICP1 DNA replication interference. Despite restoration of ICP1 DNA replication, non-replicating PLE remained broadly inhibitory against ICP1. These results suggest that PLE DNA replication is one of multiple mechanisms contributing to ICP1 restriction.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121666 ◽  
Author(s):  
Feng Liang Liu ◽  
Yi Qun Kuang ◽  
Dan Mu ◽  
Hong Yi Zheng ◽  
Jia Wu Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document