scholarly journals Biodiversity crisis or sixth mass extinction?

EMBO Reports ◽  
2021 ◽  
Author(s):  
Valentí Rull
2018 ◽  
Vol 115 (44) ◽  
pp. 11262-11267 ◽  
Author(s):  
Matt Davis ◽  
Søren Faurby ◽  
Jens-Christian Svenning

The incipient sixth mass extinction that started in the Late Pleistocene has already erased over 300 mammal species and, with them, more than 2.5 billion y of unique evolutionary history. At the global scale, this lost phylogenetic diversity (PD) can only be restored with time as lineages evolve and create new evolutionary history. Given the increasing rate of extinctions however, can mammals evolve fast enough to recover their lost PD on a human time scale? We use a birth–death tree framework to show that even if extinction rates slow to preanthropogenic background levels, recovery of lost PD will likely take millions of years. These findings emphasize the severity of the potential sixth mass extinction and the need to avoid the loss of unique evolutionary history now.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Margaret L. Fraiser ◽  
David J. Bottjer

AbstractThe end-Permian mass extinction is commonly portrayed not only as a massive biodiversity crisis but also as the time when marine benthic faunas changed from the Paleozoic Fauna, dominated by rhynchonelliform brachiopod taxa, to the Modern Fauna, dominated by gastropod and bivalve taxa. After the end-Permian mass extinction, scenarios involving the Mesozoic Marine Revolution portray a steady increase in numerical dominance by these benthic molluscs as largely due to the evolutionary effects of an “arms race.” We report here a new global paleoecological database from study of shell beds that shows a dramatic geologically sudden earliest Triassic takeover by bivalves as numerical dominants in level-bottom benthic marine communities, which continued through the Early Triassic. Three bivalve genera were responsible for this switch, none of which has any particular morphological features to distinguish it from many typical Paleozoic bivalve genera. The numerical success of these Early Triassic bivalves cannot be attributed to any of the well-known morphological evolutionary innovations of post-Paleozoic bivalves that characterize the Mesozoic Marine Revolution. Rather, their ability to mount this takeover most likely was due to the large extinction of rhynchonelliform brachiopods during the end-Permian mass extinction and aided by their environmental distribution and physiological characteristics that enabled them to thrive during periods of oceanic and atmospheric stress during the Permian/Triassic transition.


2020 ◽  
Vol 249 ◽  
pp. 108706 ◽  
Author(s):  
Erik Joaquín Torres-Romero ◽  
Anthony J. Giordano ◽  
Gerardo Ceballos ◽  
José Vicente López-Bao

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 764 ◽  
Author(s):  
Amaël Borzée ◽  
Jonathan J. Fong ◽  
Hoa Quynh Nguyen ◽  
Yikweon Jang

Amphibians are in the midst of a sixth mass extinction, and human activities play a major role in pushing species towards extinction. Landscape anthropisation has impacts that indirectly threaten species, in addition to the obvious destruction of natural habitats. For instance, land modification may bring human-commensal species in contact with sister-clades from which they were previously isolated. The species in these new contact zones are then able to hybridise to the point of reaching lineage fusion, through which the gene pool of the two species merges and one of the parental lineages becomes extirpated. Here, we documented the patterns of hybridisation between the spatially restricted D. suweonensis and the widespread D. japonicus. On the basis of the analysis of Cytochrome c oxidase subunit I mitochondrial DNA sequences (404 individuals from 35 sites) and six polymorphic microsatellites (381 individuals from 34 sites), we revealed a generalised, bi-directional, and geographically widespread hybridisation between the two species. Evidence of fertile back-crosses is provided by relatively high numbers of individuals in cyto-nuclear disequilibrium, as well as the presence of hybrid individuals further south than the species distribution limit, determined on the basis of call properties. Hybridisation is an additional threat to the endangered D. suweonensis.


2019 ◽  
Vol 112 (3) ◽  
pp. 119-121 ◽  
Author(s):  
Elsa Youngsteadt ◽  
Margarita M López-Uribe ◽  
Clyde E Sorenson

2020 ◽  
Vol 117 (24) ◽  
pp. 13596-13602 ◽  
Author(s):  
Gerardo Ceballos ◽  
Paul R. Ehrlich ◽  
Peter H. Raven

The ongoing sixth mass species extinction is the result of the destruction of component populations leading to eventual extirpation of entire species. Populations and species extinctions have severe implications for society through the degradation of ecosystem services. Here we assess the extinction crisis from a different perspective. We examine 29,400 species of terrestrial vertebrates, and determine which are on the brink of extinction because they have fewer than 1,000 individuals. There are 515 species on the brink (1.7% of the evaluated vertebrates). Around 94% of the populations of 77 mammal and bird species on the brink have been lost in the last century. Assuming all species on the brink have similar trends, more than 237,000 populations of those species have vanished since 1900. We conclude the human-caused sixth mass extinction is likely accelerating for several reasons. First, many of the species that have been driven to the brink will likely become extinct soon. Second, the distribution of those species highly coincides with hundreds of other endangered species, surviving in regions with high human impacts, suggesting ongoing regional biodiversity collapses. Third, close ecological interactions of species on the brink tend to move other species toward annihilation when they disappear—extinction breeds extinctions. Finally, human pressures on the biosphere are growing rapidly, and a recent example is the current coronavirus disease 2019 (Covid-19) pandemic, linked to wildlife trade. Our results reemphasize the extreme urgency of taking much-expanded worldwide actions to save wild species and humanity’s crucial life-support systems from this existential threat.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20150834 ◽  
Author(s):  
Michael O. Day ◽  
Jahandar Ramezani ◽  
Samuel A. Bowring ◽  
Peter M. Sadler ◽  
Douglas H. Erwin ◽  
...  

A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian–Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74–80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid- Pristerognathus AZ that is temporally constrained by a U–Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.


2016 ◽  
Vol 23 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Audra Mitchell

A global extinction crisis may threaten the survival of most existing life forms. Influential discourses of ‘existential risk’ suggest that human extinction is a real possibility, while several decades of evidence from conservation biology suggests that the Earth may be entering a ‘sixth mass extinction event’. These conditions threaten the possibilities of survival and security that are central to most branches of International Relations. However, this discipline lacks a framework for addressing (mass) extinction. From notions of ‘nuclear winter’ and ‘omnicide’ to contemporary discourses on catastrophe, International Relations thinking has treated extinction as a superlative of death. This is a profound category mistake: extinction needs to be understood not in the ontic terms of life and death, but rather in the ontological context of be(com)ing and negation. Drawing on the work of theorists of the ‘inhuman’ such as Quentin Meillassoux, Claire Colebrook, Ray Brassier, Jean-Francois Lyotard and Nigel Clark, this article provides a pathway for thinking beyond existing horizons of survival and imagines a profound transformation of International Relations. Specifically, it outlines a mode of cosmopolitics that responds to the element of the inhuman and the forces of extinction. Rather than capitulating to narratives of tragedy, this cosmopolitics would make it possible to think beyond the restrictions of existing norms of ‘humanity’ to embrace an ethics of gratitude and to welcome the possibility of new worlds, even in the face of finitude.


Sign in / Sign up

Export Citation Format

Share Document