Combined Effects of Geometric and Material Non-linearities on One Dimensional Structural Members

Author(s):  
R. Ramgopal Varma ◽  
◽  
G Venkateswazra Rao ◽  
2021 ◽  
Vol 2015 (1) ◽  
pp. 012088
Author(s):  
Y. Marques ◽  
I. A. Shelykh ◽  
I. V. Iorsh

Abstract We consider a two-dimensional extension of the one-dimensional waveguide quantum electrodynamics and investigate the nature of linear excitations in two-dimensional arrays of qubits (particularly, semiconductor quantum dots) coupled to networks of chiral waveguides. We show that the combined effects of chirality and long-range photon mediated qubit-qubit interactions lead to the emergence of the two-dimensional flat bands in the polaritonic spectrum, corresponding to slow strongly correlated light.


2010 ◽  
Vol 168-169 ◽  
pp. 97-100
Author(s):  
V.A. Ignatchenko ◽  
D.S. Tsikalov

The dynamic susceptibility and the one-dimensional density of states (DOS) of an initially sinusoidal superlattice (SL) with simultaneous presence of two-dimensional (2D) phase inhomogeneities that simulate the deformations of the interfaces between the SL’s layers and three-dimensional (3D) amplitude inhomogeneities of the layer material of the SL were investigated. An analytical expression for the averaged Green’s function of the sinusoidal SL with 2D phase inhomogeneities was obtained in the Bourret approximation. It was shown that the effect of increasing asymmetry of heights of the dynamic susceptibility peaks at the edge of the Brillouin zone of the SL, which was found in [6] at increasing the rms fluctuations of 2D inhomogeneities, also takes place at increasing the correlation wave number of such inhomogeneities. It was also shown that the increase of the rms fluctuations of 3D amplitude inhomogeneities in the superlattice with 2D phase inhomogeneities leads to the suppression of the asymmetry effect and to the decrease of the depth of the DOS gap.


2002 ◽  
Vol 12 (9) ◽  
pp. 205-209
Author(s):  
H. Seo ◽  
M. Kuwabara ◽  
M. Ogata

The ground state properties of the organic spin-Peierls compounds with one-dimensional quarter-filled band are investigated theoretically. In the strongly correlated regime, two insulating states compete to each other, which are the charge ordered state due to the inter-site Coulomb interaction, and the `dimer Mott' insulating state due to the combined effects of the electron-phonon and the on-site Coulomb interactions. In both of these states, the electron-phonon interaction further produces the lattice tetramization, which is interpreted as the spin-Peierls state.


1996 ◽  
Vol 118 (2) ◽  
pp. 286-291 ◽  
Author(s):  
H. Nakai ◽  
N. Ino ◽  
H. Hashimoto

Reciprocating-type compressors are widely used for refrigeration systems, and an understanding of piston-ring lubrication in the compressor is vital for designers in reducing the energy losses due to friction because a substantial portion of friction in the compressors is attributable to the piston-ring assembly. This study aimed at developing a one-dimensional analysis for lubrication between the piston-ring and cylinder of refrigeration compressors considering the combined effects of supply oil quantity and surface roughness on piston-ring face and cylinder wall. In the theoretical model, the piston-ring is treated as a one-dimensional dynamically loaded bearing with combined sliding and squeezing motion. The one-dimensional modified Reynolds equation based on the average flow model by Patir and Cheng is used as a governing equation. In the analysis of the modified Reynolds equation, two-types of inlet boundary conditions, flooded condition and starvation condition, are applied at the leading edge according to the supply oil quantity, and the Reynolds boundary condition is applied at the trailing edge. A numerical procedure is then developed to estimate the cyclic variation of minimum film thickness, inlet and outlet positions of lubrication film and friction force, and the combined effects of supply oil quantity and surface roughness height are examined for a typical refrigeration compressor. It is clarified from the numerical results that the supply oil quantity and surface roughness affect significantly the friction force of the piston-ring for refrigeration compressors.


Author(s):  
R.Ramgopal Varma ◽  
G. Venkateswazra Rao

Combined effects of geometric and material non-linearities on a uniform column subjected to an axial compressive load are presented in the present note. A simple, direct iterative numerical method has been proposed to study the geometric and material non-linear behavior of columns subjected to varying boundary conditions. Introduction of material non-linearity in the large deflection analysis of columns subjected to an axial compressive load reveals a reduction in Euler stress obtained when compared to the effect of geometric non-linear analysis and increase in the same when compared to the eflect of material non-linear analysis. A convergence study has been carried outfor the results obtained from the proposed iterative method to prove the efficacy.  


1990 ◽  
Vol 140 ◽  
pp. 439-440
Author(s):  
Theodoros Koupelis

Using a quasi–one-dimensional MHD model for narrow jets (which we develop by projecting the system of the ideal MHD equations onto the jet axis) we examine the relative importance of the combined effects of rotation and magnetic fields upon the acceleration of matter in jets. We also examine the relative importance of the gas pressure and the gravitational field of the source on the flow and the position of the three critical points (Alfvén, slow and fast magnetosonic). The model, being semi-analytic, allows us to easily extract the relevant physical parameters, explore extreme ranges of these parameters, find the parameter range over which outflows are possible, and identify the physical consequences of different assumptions.


1998 ◽  
Vol 120 (2) ◽  
pp. 252-258 ◽  
Author(s):  
H. Nakai ◽  
N. Ino ◽  
H. Hashimoto

This paper describes a theoretical model for piston-ring lubrication considering the combined effects of surface roughness and oil film temperature variation for refrigeration compressors. In the model, the piston-ring is treated as a one-dimensional dynamically loaded bearing with combined sliding and squeezing motion. The one-dimensional modified Reynolds equation, based on the average flow model by Patir and Cheng, is used to determine the pressure distribution, and the one-dimensional energy equation, considering the heat generated due to contact of asperities, is applied to calculate the oil film temperature distribution. In the analysis of the modified Reynolds equation, the flooded condition and Reynolds condition are employed at the leading edge and trailing edge of piston-ring, respectively. On the other hand, in the analysis of the modified energy equation, a constant temperature equivalent to the cylinder wall temperature is assumed at the leading edge. From numerical results of the minimum film thickness, pressure and temperature distributions and friction force, the combined effects of surface roughness and oil film temperature variation on these lubrication characteristics are clarified.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Sign in / Sign up

Export Citation Format

Share Document