Synthesis of ZnO/ZnFe2O4 nanocomposites in organic-free media and their photocatalytic activity under natural sunlight

2020 ◽  
Vol 14 (2) ◽  
pp. 6801-6810
Author(s):  
Rahmayeni Rahmayeni ◽  
Zulhadjri Zulhadjri ◽  
Yeni Stiadi ◽  
Agusnar Harry ◽  
Syukri Arief

Nanocomposite ZnO/ZnFe2O4 photocatalysts with different proportions of ZnFe2O4 were synthesized in organic-free media using metal nitric as precursors. The ZnO phase with hexagonal wurtzite structure and low crystallinity of ZnFe2O4 was confirmed using XRD (X-Ray diffraction). Different morphologies of the nanocomposites were obtained ranging from rice grain-like with a porous surface to homogeneous sphere-like nanoparticles as shown in Scanning Electron Microscopy (SEM) and TEM Transmission Electron Microscopy (TEM) studies. Magnetic properties measured by Visible Sampler Magnetometer (VSM) showed diamagnetic and paramagnetic behavior for the nanocomposites. Analysis with Diffuse Reflectance Spectrophotometer (DRS) UV-vis showed an increase the composition of ferrite in composites increasing its ability to absorb visible light. Photocatalytic activities of ZnO/ZnFe2O4 nanocomposites on the degradation of Rhodamine B dye reached 95.6% after 3 h under natural sunlight suggesting their suitability for sunlight driven photocatalytic applications. 

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2017 ◽  
Vol 751 ◽  
pp. 807-812
Author(s):  
Tuangphorn Prasitthikun ◽  
X. Wu ◽  
Tsugio Sato ◽  
Charusporn Mongkolkachit ◽  
Pornapa Sujaridworakun

High efficiency BiOBr/GO composites photocatalyst were successfully synthesized via a facile precipitation method. The precursors were prepared by dissolving Bi (NO3)3.5H2O and KBr in glycerol and distilled water, respectively. Various amounts (0.1-2 wt%) of graphene oxide were added into the mixed solution precursors, and stirred at room temperature to get precipitated powder without further heat treatment. The obtained products were characterized for phase, morphology, optical properties and surface area by X-ray diffraction (XRD), transmission electron microscopy (TEM), filed-emission scanning electron microscopy (FE-SEM), UV-Vis diffuse reflection spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), respectively. The morphology and structure of as-synthesized samples were composed of numerous fine plates of BiOBr dispersed on the GO sheets. The photocatalytic activities of BiOBr/GO composites were evaluated by rhodamine B degradation under visible light irradiation. As the results, the significant increase in photodegradation of BiOBr/GO composite comparing with pure BiOBr was observed. Among all samples, the composite with 1 wt% of graphene oxide showed the highest photocatalytic performance.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650013 ◽  
Author(s):  
Xijian Liu ◽  
Yangang Sun ◽  
Yeying Wang ◽  
Lijuan Zhang ◽  
Jie Lu

Nd-doped TiO2 mesoporous microspheres with possessing regular micro/nanostructure were synthesized by a simple and facile method. The structure and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms and UV-Visible absorbance spectroscopy. It was revealed that Nd-doped TiO2 mesoporous microspheres are composed of primary nanoparticles with a particle size of [Formula: see text]25[Formula: see text]nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under xenon lamp light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than TiO2 mesoporous microspheres, and the MO of 10[Formula: see text]mg/mL almost could be completely degraded by the Nd-doped TiO2 mesoporous sample (the dosage of Nd salt to TiO2 is 6%) under xenon lamp light irradiation within 1[Formula: see text]h.


2012 ◽  
Vol 465 ◽  
pp. 44-50 ◽  
Author(s):  
Su Jun Yuan ◽  
Yao Gang Li ◽  
Qing Hong Zhang ◽  
Hong Zhi Wang

The highly dispersed TiO2 sols composed of anatase crystallites (ca.5 nm) were prepared by peptization of amorphous precipitates with trifluoroactic acid (TFA) during the synthesis. The size and crystallinity of the particles were tuned by the subsequent hydrothermal treatment. The prepared TiO2 nanocrystals were characterized by X-ray diffraction and transmission electron microscopy (TEM). The TEM results indicated that the growth of the crystallites could be inhibited by the increasing addition of TFA and the average sizes of TiO2 nanocrystals were all ultrafine. The degradation of phenol over the nanocrystals after calcination at 500 °C was investigated. The photocatalytic results showed that the sample with a high addition of TFA obtained a better photocatalytic property than that of the commercial TiO2


2002 ◽  
Vol 17 (5) ◽  
pp. 1224-1231 ◽  
Author(s):  
Quan Li ◽  
I. W. Kim ◽  
S. A. Barnett ◽  
L. D. Marks

AlN/VN superlattices with different periods were studied using x-ray diffraction and transmission electron microscopy (TEM). A phase transformation of the AlN from an epitaxially stabilized rock-salt structure to a hexagonal wurtzite structure was observed for an AlN layer thickness greater than 4 nm. A structural model is proposed on the basis of TEM results for the orientation of the transformed phase. The VN layer grown on top of the hexagonal AlN was observed to be reoriented compared to that in the stabilized B1-AlN/VN. The VN nucleated by taking the w-AlN(002) plane as its (111) plane instead of the (002) plane.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2303 ◽  
Author(s):  
Yinxia Chen ◽  
Xianbing Ji ◽  
Vadivel Sethumathavan ◽  
Bappi Paul

In this present work, we synthesized a yolk-shell shaped CuCo2S4 by a simple anion exchange method. The morphological and structural properties of the as-synthesized sample were characterized using X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The SEM and TEM results confirmed that the uniform yolk-shell structure was formed during the solvothermal process. The band gap was about 1.41 eV, which have been confirmed by UV–vis DRS analysis. The photocatalytic property was evaluated by the photocatalytic degradation of methylene blue (MB) dye as a target pollutant under the visible-light irradiation. The experimental results confirmed the potential application of yolk-shell shape CuCo2S4 in visible-light photocatalytic applications.


2013 ◽  
Vol 385-386 ◽  
pp. 16-18
Author(s):  
Yan Zhong Zhen ◽  
Dan Jun Wang ◽  
Feng Fu ◽  
Gang Lin Xue

A novel mixed metal molybdates, Zn2(MoO4)(SeO3) 1 has been synthesized by a simple hydrothermal process. Samples obtained are characterized using powder and single crystal X-ray diffraction (XRD), transmission electron microscopy (TEM). Furthermore, the photocatalytic performances of samples obtained are investigated for degradation of RhB under visible light irradiation. photocayalysis experimental result has illustrated that the compound exhibits good photocatalysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Weicheng Xu ◽  
Zhang Liu ◽  
Jianzhang Fang ◽  
Guangyin Zhou ◽  
Xiaoting Hong ◽  
...  

Pyrochlore-type Bi2Sn2O7(BSO) nanoparticles have been prepared by a hydrothermal method assisted with a cationic surfactant cetyltrimethylammonium bromide (CTAB). These BSO products were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and UV-visible diffuse reflectance spectroscopy (DRS). The results indicated that CTAB alters the surface parameters and the morphology and enhances the photoinduced charge separation rate of BSO. The photocatalytic degradation test using rhodamine B as a model pollutant showed that the photocatalytic activity of the BSO assisted with CTAB was two times that of the reference BSO. Close investigation revealed that the size, the band gap, the structure, and the existence of impurity level played an important role in the photocatalytic activities.


2018 ◽  
Vol 29 (1) ◽  
pp. 150 ◽  
Author(s):  
Huda Jabur Ali

This paper presents study of the properties of ZnO and ZnO:B deposited at 450oC on glass substrates by chemical spray pyrolysis (CSP) with thickness(150±5 nm) as a gas sensor for vapor ethanol and CO gases. The structure of ZnO:B  films has been found to exhibit the hexagonal wurtzite structure. The increase of boron concentration caused to decrease the grain size. The structural details were obtained from X-ray diffraction. The surface morphology of the films was studied by using the Scanning Electron Microscopy (SEM), and the Transmission electron microscopy (TEM). Sensitivity of the films is increases with the increase of boron concentration and substrate temperature


Author(s):  
Fengfeng Li ◽  
Mingxi Zhang ◽  
Jin Wang ◽  
Yongfeng Cai ◽  
Dushao Zhao ◽  
...  

Abstract In this work, we fabricate a highly efficient photocatalytic AgBr/Ag2CO3 heterojunction through the co-precipitation method. The obtained samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy. The photocatalytic activities of obtained samples can be assessed by visible light (λ ≥ 400 nm) degradation of rhodamine B solution. X-ray diffraction revealed that the crystallinity of the AgBr/Ag2CO3heterojunction was significantly higher than pure AgBr and Ag2CO3. Moreover, the AgBr/ Ag2CO3 heterojunction prepared at pH = 6 has the best photocatalytic performance, it can raise the degradation degree of rhodamine B over 95% at 20 min. Finally, a possible photocatalytic mechanism is discussed.


Sign in / Sign up

Export Citation Format

Share Document