DEFECTIVE THYROID HORMONE BIOSYNTHESIS WITH ANOMALOUS REACTION TO THYROID THERAPY: REPORT OF A CASE

1963 ◽  
Vol 42 (3) ◽  
pp. 412-422 ◽  
Author(s):  
J. D. Wiener ◽  
G. A. Lindeboom

A case is presented of an euthyroid woman with an excessively large goitre, present since childhood. A distinct discrepancy was found between total protein bound iodine and butanol extractable iodine in the serum, and an elevated part of the plasma radioactivity after a test dose of 131I was not adsorbed on ion exchange resin. However, this non-adsorbed (»protein-like«) 131I was at least partly extractable with acid butanol. The fractional turnover rate of radiothyroxine was high. The possibility is raised that the pathological component was brought into the circulation as a result of an inborn defect in the thyroidal synthesis or proteolysis of thyroglobulin, and that it was composed of a number of more or less simple peptides, possibly not without some hormonal activity. The uptake of radioiodine by the thyroid was only partly suppressed by desiccated thyroid therapy, but most of the trapped radioactivity did not appear to be incorporated into organic compounds.

1981 ◽  
Vol 6 ◽  
Author(s):  
Jeffrey D. Williams

ABSTRACTIncreased concern by the State of South Carolina over the condition and capacity of the low-level radioactive waste burial site at Barnwell has prompted them to promulgate new regulations on waste burial containers. As of September 30, 1981, ion exchange resin and filter media waste with an activity of 1 μCi/cc or greater and with isotopes with halflives greater than five years disposed at Barnwell shall be solidified or confined in a “high integrity container”. The materials and designs of these containers are required to provide waste isolation from the environment for a period of 300 years and provide the structural integrity specified in 49 CFR 173.398(b). HITTMAN has been active in the design and development of containers suitable for this purpose with this paper detailing the analyses involved. Material selections were limited to stainless steel, fiberglass, and polyethylenes. Structural concerns focused on overpressure requirements, drop-testing requirements, and lifting capabilities. With a lifetime dose of up to 108 rads, the possibilities of radiation damage were considered. Preliminary selection of polyethylene was based on satisfactory resolution of these issues and economic factors.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


1977 ◽  
Vol 49 (6) ◽  
pp. 764-766 ◽  
Author(s):  
Toshihiko. Hanai ◽  
Harold F. Walton

RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4478-4488
Author(s):  
Sivaprakasam Anbazhagan ◽  
Venugopal Thiruvengadam ◽  
Anandhakumar Sukeri

We have demonstrated a high Pb2+ removal efficiency (73.45%) from wastewater using a Prosopis juliflora-seed-modified Amberlite IRA-400 Cl− ion-exchange resin (SMA resin).


Sign in / Sign up

Export Citation Format

Share Document