Evidence for direct non-genomic effects of triiodothyronine on bone rudiments in rats: Stimulation of the inositol phosphate second messenger system

1991 ◽  
Vol 125 (6) ◽  
pp. 603-608 ◽  
Author(s):  
Peter Lakatos ◽  
Paula H. Stern

Abstract. Thyroid hormones increase cytosolic free calcium by binding to plasma membrane receptors in several tissues. This calcium increase appears to initiate extranuclear effects in these tissues. Increases in cytosolic calcium are often a consequence of stimulation of inositol phosphate second messenger pathway. Several calcemic hormones act via this signal transduction route. Therefore we investigated the effects of the metabolically active T3 and the inactive analogues 3,5-diiodotyrosine and rT3 on the inositol phosphate pathway in fetal rat limb bone cultures prelabeled with [3H]myoinositol. Labelled inositol and inositol phosphates were separated by HPLC. There was a significant increase in the radioactivity in inositol bis- and trisphosphates after 1 min of exposure to 10−7 mol/l T3. Stimulation was also observed at 10−6 mol/l T3, but not at 10−5 mol/l. Time course studies demonstrated a rapid effect of T3 on inositol phosphates within 30 seconds that lasted through 5 min. After 20 min incubation with T3, no increase was observed in inositol mono- and bisphosphates, and a decrease was seen in inositol trisphosphate. Pretreatment with indomethacin prevented these effects of T3. 3,5-diiodothyrosine and rT3 did not affect inositol phosphate metabolism. These results suggest the existence of plasma membrane-associated receptors for T3 in bone, in addition to the nuclear receptors demonstrated previously. The role of these receptors in the effects of thyroid hormones on bone remains to be established.

1993 ◽  
Vol 264 (1) ◽  
pp. H126-H132
Author(s):  
V. Pijuan ◽  
I. Sukholutskaya ◽  
W. G. Kerrick ◽  
M. Lam ◽  
C. van Breemen ◽  
...  

Rapid stimulation of Ins(1,4,5)P3 production in rat aorta by NE: correlation with contractile state. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H126-H132, 1993.--The isomeric composition of inositol phosphates generated in response to norepinephrine (NE) stimulation and the relationship of inositol phosphate production to release of intracellular Ca2+ as measured by contraction were characterized in rat aorta prelabeled with [3H]inositol. NE stimulated a rapid and transient increase in labeled D-myo-inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] levels. A maximal increase in labeled Ins(1,4,5)P3 occurred within 15 s of stimulation followed by a decline to control levels at 5 min. D-Myo-inositol 1,3,4-trisphosphate [Ins-(1,3,4)P3] and D-myo-inositol 1-monophosphate [Ins(1)P] levels also increased rapidly in response to NE. In contrast to the transient production of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1)P production was maintained in the presence of NE. Half-maximal stimulation of Ins(1,4,5)P3 production and Ca2+ release occurred at 0.3 microM NE, and maximal effects were obtained with 10 microM NE. The concentration-response curve and time course for production of Ins(1,4,5)P3 correlated with the neurotransmitter-induced Ca2+ release from intracellular stores, indicating that the level of Ins(1,4,5)P3 regulated the Ca(2+)-release mechanism. In the continued presence of NE, the intracellular pools did not completely refill with Ca2+ despite the return of Ins-(1,4,5)P3 levels to basal at 5 min. These results demonstrate that NE stimulates a rapid increase in Ins(1,4,5)P3 that correlates with contraction in Ca(2+)-free buffer. The reuptake of Ca2+ into intracellular stores is regulated by a mechanism that may not involve Ins(1,4,5)P3.


1988 ◽  
Vol 251 (1) ◽  
pp. 279-284 ◽  
Author(s):  
M L Rand ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

Ethanol has an inhibitory effect on some platelet functions, but the mechanisms by which it exerts this effect are not known. Using suspensions of washed platelets, we observed that ethanol (1-9 mg/ml) did not affect the aggregation of rabbit platelets stimulated with ADP (0.5-10 microM). When platelets were prelabelled with 5-hydroxy[14C]tryptamine, aggregation and secretion of granule contents in response to thrombin (0.01-0.10 unit/ml) were not inhibited by ethanol, but these responses to thrombin at lower concentrations (less than 0.01 unit/ml) were inhibited by ethanol (2-4 mg/ml). Platelets were prelabelled with [3H]inositol so that increases in inositol phosphates upon stimulation could be assessed by measuring the amount of label in these compounds. ADP-induced increases in IP (inositol phosphate) and IP2 (inositol bisphosphate) were not affected by ethanol. IP3 (inositol trisphosphate) was not changed by ADP or ethanol. Although ethanol did not affect the increases in IP, IP2 and IP3 caused by stimulation of platelets with thrombin at concentrations greater than 0.01 unit/ml, ethanol did inhibit the increases observed at 2 and 3 min in these inositol phosphates caused by lower concentrations of thrombin (less than 0.01 unit/ml). Since ADP did not cause formation of IP3 in rabbit platelets, and since no thromboxane B2 was detected in platelets stimulated with the lower concentrations of thrombin, it is unlikely that the inhibitory effect of ethanol in IP3 formation was due to effects on further stimulation of platelets by released ADP or by thromboxane A2. Ethanol may inhibit platelet responses to thrombin by inhibiting the production of the second messenger, IP3.


1986 ◽  
Vol 238 (2) ◽  
pp. 537-542 ◽  
Author(s):  
R P Leach ◽  
S B Shears ◽  
C J Kirk ◽  
M A Titheradge

Isolated hepatocytes from fed rats were used to study the effects of the opioid peptide [Leu]enkephalin on intracellular free cytosolic Ca2+ ([Ca2+]i) and inositol phosphate production. By measuring the fluorescence of the intracellular Ca2+-selective indicator quin-2, [Leu]enkephalin was found to increase [Ca2+]i rapidly from a resting value of 0.219 microM to 0.55 microM. The magnitude of this response was comparable with that produced by maximally stimulating concentrations of either vasopressin (100 nM) or phenylephrine (10 microM). The opioid-peptide-mediated increase in [Ca2+]i showed a dose-dependency comparable with the activation of phosphorylase, but it preceded the increase in phosphorylase alpha activity. Addition of [Leu]enkephalin to hepatocytes prelabelled with myo-[2-3H(n)]inositol resulted in a significant stimulation of inositol phosphate production. At 10 min after hormone addition, there were increases in the concentrations of inositol mono-, bis- and tris-phosphate fractions of 12-, 9- and 14-fold respectively. No effect was apparent on the glycerophosphoinositol fraction. The effect of 10 microM-[Leu]enkephalin on inositol phosphate production was significantly greater than that obtained with 10 microM-phenylephrine, but marginally smaller than that induced by 100 nM-vasopressin. However, at these concentrations all three agonists gave a comparable increase in [Ca2+]i and activation of phosphorylase a. These data provide evidence for [Leu]enkephalin acting via a mechanism involving a mobilization of Ca2+ as a result of increased phosphatidylinositol turnover.


1981 ◽  
Vol 194 (3) ◽  
pp. 949-956 ◽  
Author(s):  
J P Dehaye ◽  
B P Hughes ◽  
P F Blackmore ◽  
J H Exton

The effects of insulin on alpha-agonist (phenylephrine)- and [Arg8]vasopressin-induced Ca2+ and glucose release and mitochondrial Ca2+ fluxes in isolated perfused rat livers were examined. Insulin (6 nM) inhibited the ability of phenylephrine (1 and 0.5 microM) to elicit Ca2+ and glucose release, whereas it was without effect on vasopressin (10 and 2.5 nM) actions. Correspondingly, insulin inhibited the action of phenylephrine to induce a stable increase in mitochondrial Ca2+ uptake, but it did not affect the alteration caused by vasopressin. Phenylephrine and vasopressin caused transient increases in hepatocyte respiration. Insulin inhibited the effect of phenylephrine on this parameter, but not that of vasopressin. Insulin added alone did not alter any of the above parameters. It is concluded from these data that insulin does not alter cellular Ca2+ fluxes and respiration themselves, but selectively inhibits alpha-adrenergic stimulation of these processes. It is proposed that insulin acts either to inhibit binding of alpha-agonists to their specific plasma-membrane receptors or to alter generation and/or degradation of the putative alpha-adrenergic ‘second messenger’. If this latter possibility is the case, then the alpha-adrenergic ‘second messenger’ must be different from the ‘second messenger’ of vasopressin.


1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


Endocrinology ◽  
2004 ◽  
Vol 145 (7) ◽  
pp. 3095-3100 ◽  
Author(s):  
Laurie B. Cook ◽  
Patricia M. Hinkle

Abstract Trafficking of TRH receptors was studied in a stable HEK293 cell line expressing receptor fused to a Timer protein (TRHR-Timer) that spontaneously changes from green to red over 10 h. Cells expressing TRHR-Timer responded to TRH with an 11-fold increase in inositol phosphate formation, increased intracellular free calcium, and internalization of 75% of bound [3H][N3-methyl-His2]TRH within 10 min. After a 20-min exposure to TRH at 37 C, 75–80% of surface binding sites disappeared as receptors internalized. When TRH was removed and cells incubated in hormone-free medium, approximately 75% of [3H][N3-methyl-His2]TRH binding sites reappeared at the surface over the next 2 h with or without cycloheximide. Trafficking of TRHR-Timer was monitored microscopically after addition and withdrawal of TRH. In untreated cells, both new (green) and old (red) receptors were seen at the plasma membrane, and TRH caused rapid movement of young and old receptors into cytoplasmic vesicles. When TRH was withdrawn, some TRHR-Timer reappeared at the plasma membrane after several hours, but much of the internalized receptor remained intracellular in vesicles that condensed to larger structures in perinuclear regions deeper within the cell. Strikingly, receptors that moved to the plasma membrane were generally younger (more green) than those that underwent endocytosis. There was no change in the red to green ratio over the course of the experiment in cells exposed to vehicle. The results indicate that, after agonist-driven receptor internalization, the plasma membrane is replenished with younger receptors, arising either from an intracellular pool or preferential recycling of younger receptors.


1989 ◽  
Vol 66 (1) ◽  
pp. 504-508 ◽  
Author(s):  
T. Bainbridge ◽  
R. D. Feldman ◽  
M. J. Welsh

To determine whether inositol phosphates are important second messengers in the regulation of Cl- secretion by airway epithelia, we examined the relationship between inositol phosphate accumulation and Cl- secretion in response to adrenergic agonists. We found that epinephrine stimulated Cl- secretion and inositol phosphate accumulation with similar concentration dependence. Although isoproterenol stimulated Cl- secretion, there was no effect of beta-adrenergic receptor activation on inositol phosphate accumulation. In contrast, alpha 1-adrenergic receptor activation stimulated inositol phosphate accumulation but failed to induce Cl- secretion. Another Cl- secretagogue, prostaglandin E1, also failed to stimulate inositol phosphate accumulation. These data suggest that inositol phosphate accumulation is neither sufficient nor required for stimulation of Cl- secretion in cultured canine tracheal epithelial cells.


1988 ◽  
Vol 249 (3) ◽  
pp. 917-920 ◽  
Author(s):  
C W Taylor ◽  
D M Blakeley ◽  
A N Corps ◽  
M J Berridge ◽  
K D Brown

We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.


1986 ◽  
Vol 251 (2) ◽  
pp. C230-C237 ◽  
Author(s):  
J. B. Feldstein ◽  
R. A. Gonzales ◽  
S. P. Baker ◽  
C. Sumners ◽  
F. T. Crews ◽  
...  

The expression of alpha 1-adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125I-2-[beta-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125I-HEAT bound selectively to alpha 1-adrenergic receptors. Specific binding of 125I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of alpha 1-adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the alpha 1-adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of alpha 1-adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain.


Sign in / Sign up

Export Citation Format

Share Document