scholarly journals Thrombin-induced inositol trisphosphate production by rabbit platelets is inhibited by ethanol

1988 ◽  
Vol 251 (1) ◽  
pp. 279-284 ◽  
Author(s):  
M L Rand ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

Ethanol has an inhibitory effect on some platelet functions, but the mechanisms by which it exerts this effect are not known. Using suspensions of washed platelets, we observed that ethanol (1-9 mg/ml) did not affect the aggregation of rabbit platelets stimulated with ADP (0.5-10 microM). When platelets were prelabelled with 5-hydroxy[14C]tryptamine, aggregation and secretion of granule contents in response to thrombin (0.01-0.10 unit/ml) were not inhibited by ethanol, but these responses to thrombin at lower concentrations (less than 0.01 unit/ml) were inhibited by ethanol (2-4 mg/ml). Platelets were prelabelled with [3H]inositol so that increases in inositol phosphates upon stimulation could be assessed by measuring the amount of label in these compounds. ADP-induced increases in IP (inositol phosphate) and IP2 (inositol bisphosphate) were not affected by ethanol. IP3 (inositol trisphosphate) was not changed by ADP or ethanol. Although ethanol did not affect the increases in IP, IP2 and IP3 caused by stimulation of platelets with thrombin at concentrations greater than 0.01 unit/ml, ethanol did inhibit the increases observed at 2 and 3 min in these inositol phosphates caused by lower concentrations of thrombin (less than 0.01 unit/ml). Since ADP did not cause formation of IP3 in rabbit platelets, and since no thromboxane B2 was detected in platelets stimulated with the lower concentrations of thrombin, it is unlikely that the inhibitory effect of ethanol in IP3 formation was due to effects on further stimulation of platelets by released ADP or by thromboxane A2. Ethanol may inhibit platelet responses to thrombin by inhibiting the production of the second messenger, IP3.

1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


1991 ◽  
Vol 125 (6) ◽  
pp. 603-608 ◽  
Author(s):  
Peter Lakatos ◽  
Paula H. Stern

Abstract. Thyroid hormones increase cytosolic free calcium by binding to plasma membrane receptors in several tissues. This calcium increase appears to initiate extranuclear effects in these tissues. Increases in cytosolic calcium are often a consequence of stimulation of inositol phosphate second messenger pathway. Several calcemic hormones act via this signal transduction route. Therefore we investigated the effects of the metabolically active T3 and the inactive analogues 3,5-diiodotyrosine and rT3 on the inositol phosphate pathway in fetal rat limb bone cultures prelabeled with [3H]myoinositol. Labelled inositol and inositol phosphates were separated by HPLC. There was a significant increase in the radioactivity in inositol bis- and trisphosphates after 1 min of exposure to 10−7 mol/l T3. Stimulation was also observed at 10−6 mol/l T3, but not at 10−5 mol/l. Time course studies demonstrated a rapid effect of T3 on inositol phosphates within 30 seconds that lasted through 5 min. After 20 min incubation with T3, no increase was observed in inositol mono- and bisphosphates, and a decrease was seen in inositol trisphosphate. Pretreatment with indomethacin prevented these effects of T3. 3,5-diiodothyrosine and rT3 did not affect inositol phosphate metabolism. These results suggest the existence of plasma membrane-associated receptors for T3 in bone, in addition to the nuclear receptors demonstrated previously. The role of these receptors in the effects of thyroid hormones on bone remains to be established.


1987 ◽  
Author(s):  
P P Winocour ◽  
P D Rand ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

Platelets from rats with diet-induced hypercholesterolemia are hypersensitive to thrombin through a pathway independent of released ADP or thromboxane A2 (TXA2) formation. We examined if platelets from rats with spontaneous hypercholesterolemia (HC) are similarly hypersensitive. HC rats (plasma cholesterol: 130±4 mg/dl, n=15) were compared with their normocholesterolemic genetic controls (NC) (87±4 mg/dl, p<0.001, n=16). Total cholesterol/109 platelets was not different between the groups (HC: 0.314±0.032 μmole, n=7; NC: 0.357±0.046 ymole, n=7). Washed platelets were prelabelled with 14c-serotonin. In the presence of aspirin (to inhibit TXA2 formation) and creatine phosphate/creatine phosphokinase (CP/CPK) (to remove released ADP), HC platelets aggregated more (22±2%, n=ll) than NC platelets (10±4%, n=12, p<0.01) in response to thrombin (0.065 U/ml); 14C release was not different. Thrombin causes inositol mono-, bis-, and trisphosphate (IP, IP2, IP3) formation from phosphoinositides (PI, PIP, PIP2 respectively) in rabbit platelets; IP3 may be involved in Ca++ mobilization and the release of granule contents. We examined if enhanced inositol phosphate formation was associated with hypersensitivity of HC platelets. Platelets were prelabelled with 3H-inositol and stimulated with thrombin (0.057 U/ml) for 30 sec in the presence of aspirin and CP/CPK. Li+ (20 mM) was used to prevent degradation of inositol phosphates to inositol. 3H-IP, IP2 and IP3 were isolated by ion-exchange chromatography. The increase in radioactivity (dpm/109 platelets) in IP2 and IP3 following thrombin stimulation was greater in HC platelets (IP2: 2210±160, n=4; IP3: 1430±180, n=4) than in NC platelets (IP2: 660±150, n=4, p<0.001; IP3: 490±100, n=4, p<0.01); IP was not different.Thus platelets from spontaneously HC rats are hypersensitive to thrombin independently of released ADP or TXA2 formation. This hypersensitivity is associated with only moderate increases in plasma cholesterol and no detectable increase in total platelet cholesterol. Enhanced labelling of IP3 may indicate that enhanced activity of the pathways leading to IP3 formation is associated with this hypersensitivity.


1984 ◽  
Vol 224 (2) ◽  
pp. 399-405 ◽  
Author(s):  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

Experiments with washed rabbit platelets demonstrate that stimulation with a low concentration of thrombin (0.1 unit/ml), that causes maximal aggregation and partial release of amine granule contents, also causes increased accumulation of [3H]inositol-labelled inositol trisphosphate (InsP3) in the presence of 20 mM-Li+. This concentration of Li+ was found to inhibit the degradation of inositol phosphates by phosphomonoesterases. This result indicates that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is degraded early after platelet stimulation with thrombin, although in a previous study we had found no decrease in amount. In the absence of Li+, the labelling of inositol bisphosphate (InsP2) increased more rapidly than that of InsP3, consistent with rapid degradation of InsP3 by phosphomonoesterase. After 30s the increase in InsP2 was augmented by Li+. This increase in InsP2 could have been due to increased degradation of phosphatidylinositol 4-phosphate or inhibition of breakdown of InsP2 to InsP with a lesser inhibition of breakdown of InsP3 to InsP2. The effect on InsP3 and InsP2 of stimulation of the platelets with 1.0 unit of thrombin/ml was comparable with the effect of the lower concentration of thrombin. Inositol phosphate (InsP) labelling did not increase in response to 0.1 unit of thrombin/ml, but increased when the platelets were stimulated with 1.0 unit of thrombin/ml. Whether the increase in InsP was due to increased degradation of phosphatidylinositol or a greater rate of breakdown of InsP2 to InsP than InsP to inositol cannot be determined in these experiments. These results indicate that degradation of PtdIns(4,5)P2 is an early event in platelet activation by thrombin and that formation of inositol phosphates and 1,2-diacylglycerol rather than a decrease in PtdIns(4,5)P2 may be the important change.


1985 ◽  
Vol 226 (2) ◽  
pp. 563-569 ◽  
Author(s):  
M P Schrey

The production of inositol phosphates in response to gonadotropin releasing hormone (GnRH) was studied in rat anterior pituitary tissue preincubated with [3H]inositol. Prelabelled paired hemipituitaries from prepubertal female rats were incubated in the presence or absence of GnRH in medium containing 10 mM-Li+ X Li+, which inhibits myo-inositol-1-phosphatase, greatly amplified the stimulation of inositol phosphate production by GnRH (10(-7) M) to 159, 198 and 313% of paired control values for inositol 1-phosphate, inositol bisphosphate and inositol trisphosphate respectively after 20 min. The percentage distribution of [3H]inositol within the phosphoinositides was 91.3, 6.3 and 2.4 for phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively and was unaffected by GnRH. The stimulation of inositol trisphosphate production by GnRH was evident after 5 min incubation, was dose-dependent with a half-maximal effect around 11 nM, and was not inhibited by removal of extracellular Ca2+. Elevation of cytosolic Ca2+ by membrane depolarization with 50 mM-K+ had no significant effect on inositol phosphate production. These findings are consistent with the hypothesis that GnRH action in the anterior pituitary involves the hydrolysis of phosphatidylinositol 4,5-bisphosphate. The resulting elevation of inositol trisphosphate may in turn lead to intracellular Ca2+ mobilization and subsequent stimulation of gonadotropin secretion.


1992 ◽  
Vol 263 (2) ◽  
pp. C535-C539 ◽  
Author(s):  
D. M. Berman ◽  
W. F. Goldman

Cytosolic Ca2+ concentrations ([Ca2+]cyt) and [3H]inositol phosphates ([3H]InsP) were correlated while varying the Ca2+ content of the sarcoplasmic reticulum (SR) in cultured A7r5 cells at rest and during activation with [Arg8]-vasopressin (AVP). Thapsigargin (TG) raised and superfusion with 0 Ca2+ lowered [Ca2+]cyt, but both treatments decreased SR Ca2+ and AVP-evoked Ca2+ transients. Neither TG nor 0 Ca2+ affected basal [3H]InsP, but both treatments increased AVP-evoked synthesis of [3H]InsP. Exposure for several minutes to 40 mM K+ solution, BAY K 8644, or low-Na+ solution all elevated [Ca2+]cyt and, thereby, increased SR Ca2+, as manifested by augmented AVP-evoked Ca2+ transients. In all three cases, AVP-evoked, but not basal, [3H]InsP were reduced. The inhibitory effect of 40 mM K+ on AVP-evoked [3H]InsP synthesis was blocked when SR Ca2+ uptake was prevented by TG. Brief (30-s) exposures to 40 mM K+, which elevated [Ca2+]cyt but not SR Ca2+ loading, did not modify AVP-evoked [3H]InsP synthesis or Ca2+ transients. These results demonstrate an inverse relationship between SR Ca2+ content and evoked [3H]-InsP synthesis. Moreover, they suggest that SR Ca2+ may serve as a signal that modulates sarcolemmal [3H]InsP formation.


1989 ◽  
Vol 66 (1) ◽  
pp. 504-508 ◽  
Author(s):  
T. Bainbridge ◽  
R. D. Feldman ◽  
M. J. Welsh

To determine whether inositol phosphates are important second messengers in the regulation of Cl- secretion by airway epithelia, we examined the relationship between inositol phosphate accumulation and Cl- secretion in response to adrenergic agonists. We found that epinephrine stimulated Cl- secretion and inositol phosphate accumulation with similar concentration dependence. Although isoproterenol stimulated Cl- secretion, there was no effect of beta-adrenergic receptor activation on inositol phosphate accumulation. In contrast, alpha 1-adrenergic receptor activation stimulated inositol phosphate accumulation but failed to induce Cl- secretion. Another Cl- secretagogue, prostaglandin E1, also failed to stimulate inositol phosphate accumulation. These data suggest that inositol phosphate accumulation is neither sufficient nor required for stimulation of Cl- secretion in cultured canine tracheal epithelial cells.


1988 ◽  
Vol 249 (3) ◽  
pp. 917-920 ◽  
Author(s):  
C W Taylor ◽  
D M Blakeley ◽  
A N Corps ◽  
M J Berridge ◽  
K D Brown

We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.


1993 ◽  
Vol 264 (1) ◽  
pp. H126-H132
Author(s):  
V. Pijuan ◽  
I. Sukholutskaya ◽  
W. G. Kerrick ◽  
M. Lam ◽  
C. van Breemen ◽  
...  

Rapid stimulation of Ins(1,4,5)P3 production in rat aorta by NE: correlation with contractile state. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H126-H132, 1993.--The isomeric composition of inositol phosphates generated in response to norepinephrine (NE) stimulation and the relationship of inositol phosphate production to release of intracellular Ca2+ as measured by contraction were characterized in rat aorta prelabeled with [3H]inositol. NE stimulated a rapid and transient increase in labeled D-myo-inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] levels. A maximal increase in labeled Ins(1,4,5)P3 occurred within 15 s of stimulation followed by a decline to control levels at 5 min. D-Myo-inositol 1,3,4-trisphosphate [Ins-(1,3,4)P3] and D-myo-inositol 1-monophosphate [Ins(1)P] levels also increased rapidly in response to NE. In contrast to the transient production of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1)P production was maintained in the presence of NE. Half-maximal stimulation of Ins(1,4,5)P3 production and Ca2+ release occurred at 0.3 microM NE, and maximal effects were obtained with 10 microM NE. The concentration-response curve and time course for production of Ins(1,4,5)P3 correlated with the neurotransmitter-induced Ca2+ release from intracellular stores, indicating that the level of Ins(1,4,5)P3 regulated the Ca(2+)-release mechanism. In the continued presence of NE, the intracellular pools did not completely refill with Ca2+ despite the return of Ins-(1,4,5)P3 levels to basal at 5 min. These results demonstrate that NE stimulates a rapid increase in Ins(1,4,5)P3 that correlates with contraction in Ca(2+)-free buffer. The reuptake of Ca2+ into intracellular stores is regulated by a mechanism that may not involve Ins(1,4,5)P3.


1985 ◽  
Vol 232 (3) ◽  
pp. 799-804 ◽  
Author(s):  
R A Gonzales ◽  
F T Crews

The guanine nucleotides guanosine 5′[beta, gamma-imido]triphosphate (Gpp[NH]p), guanosine 5′-[γ-thio]-triphosphate (GTP gamma S), GMP, GDP and GTP stimulated the hydrolysis of inositol phospholipids by a phosphodiesterase in rat cerebral cortical membranes. Addition of 100 microM-Gpp[NH]p to prelabelled membranes caused a rapid accumulation of [3H)inositol phosphates (less than 30 s) for up to 2 min. GTP gamma S and Gpp [NH]p caused a concentration-dependent stimulation of phosphoinositide phosphodiesterase with a maximal stimulation of 2.5-3-fold over control at concentrations of 100 microM. GMP was as effective as the nonhydrolysable analogues, but much less potent (EC50 380 microM). GTP and GDP caused a 50% stimulation of the phospholipase C at 100 microM and at higher concentrations were inhibitory. The adenine nucleotides App[NH]p and ATP also caused small stimulatory effects (64% and 29%). The guanine nucleotide stimulation of inositide hydrolysis in cortical membranes was selective for inositol phospholipids over choline-containing phospholipids. Gpp[NH]p stimulated the production of inositol trisphosphate and inositol bisphosphate as well as inositol monophosphate, indicating that phosphoinositides are substrates for the phosphodiesterase. EGTA (33 microM) did not prevent the guanine nucleotide stimulation of inositide hydrolysis. Calcium addition by itself caused inositide phosphodiesterase activation from 3 to 100 microM which was additive with the Gpp[NH]p stimulation. These data suggest that guanine nucleotides may play a regulatory role in the modulation of the activity of phosphoinositide phosphodiesterase in rat cortical membranes.


Sign in / Sign up

Export Citation Format

Share Document