scholarly journals A MEN1 pancreatic neuroendocrine tumour mouse model under temporal control

2017 ◽  
Vol 6 (4) ◽  
pp. 232-242 ◽  
Author(s):  
K E Lines ◽  
R P Vas Nunes ◽  
M Frost ◽  
C J Yates ◽  
M Stevenson ◽  
...  

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by occurrence of parathyroid tumours and neuroendocrine tumours (NETs) of the pancreatic islets and anterior pituitary. The MEN1 gene, encoding menin, is a tumour suppressor, but its precise role in initiating in vivo tumourigenesis remains to be elucidated. The availability of a temporally controlled conditional MEN1 mouse model would greatly facilitate the study of such early tumourigenic events, and overcome the limitations of other MEN1 knockout models, in which menin is lost from conception or tumour development occurs asynchronously. To generate a temporally controlled conditional mouse model, we crossbred mice with the MEN1 gene floxed by LoxP sites (Men1L/L), and mice expressing tamoxifen-inducible Cre recombinase under the control of the rat insulin promoter (RIP2-CreER), to establish a pancreatic β-cell-specific NET model under temporal control (Men1L/L/RIP2-CreER). Men1L/L/RIP2-CreER mice aged ~3 months were given tamoxifen in the diet for 5 days, and pancreata harvested 2–2.5, 2.9–3.5 and 4.5–5.5 months later. Control mice did not express Cre and did not receive tamoxifen. Immunostaining of pancreata from tamoxifen-treated Men1L/L/RIP2-CreER mice, compared to control mice, showed at all ages: loss of menin in all islets; increased islet area (>4.2-fold); increased proliferation of insulin immunostaining β-cells (>2.3-fold) and decreased proliferation of glucagon immunostaining α-cells (>1.7-fold). There were no gender and apoptotic or proliferation differences, and extra-pancreatic tumours were not detected. Thus, we have established a mouse model (Men1L/L/RIP2-CreER) to study early events in the development of pancreatic β-cell NETs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirofumi Noguchi ◽  
Chika Miyagi-Shiohira ◽  
Takao Kinjo ◽  
Issei Saitoh ◽  
Masami Watanabe

AbstractThe insulin promoter is regulated by ubiquitous as well as pancreatic β-cell-specific transcription factors. In the insulin promoter, GG2–GG1/A2–C1 (bases − 149 to − 116 in the human insulin promoter) play important roles in regulating β-cell-specific expression of the insulin gene. However, these events were identified through in vitro studies, and we are unaware of comparable in vivo studies. In this study, we evaluated the activity of GG2–GG1/A2 elements in the insulin promoter region in vivo. We generated homozygous mice with mutations in the GG2–GG1/A2 elements in each of the Ins1 and Ins2 promoters by CRISPR–Cas9 technology. The mice with homozygous mutations in the GG2–GG1/A2 elements in both Ins1 and Ins2 were diabetic. These data suggest that the GG2–GG1/A2 element in mice is important for Ins transcription in vivo.


2010 ◽  
Vol 298 (6) ◽  
pp. E1261-E1273 ◽  
Author(s):  
Gao Sun ◽  
Andrei I. Tarasov ◽  
James A. McGinty ◽  
Paul M. French ◽  
Angela McDonald ◽  
...  

The tumor suppressor liver kinase B1 (LKB1), also called STK11, is a protein kinase mutated in Peutz-Jeghers syndrome. LKB1 phosphorylates AMP-activated protein kinase (AMPK) and several related protein kinases. Whereas deletion of both catalytic isoforms of AMPK from the pancreatic β-cell and hypothalamic neurons using the rat insulin promoter (RIP2). Cre transgene (βAMPKdKO) diminishes insulin secretion in vivo, deletion of LKB1 in the β-cell with an inducible Pdx-1.CreER transgene enhances insulin secretion in mice. To determine whether the differences between these models reflect genuinely distinct roles for the two kinases in the β-cell or simply differences in the timing and site(s) of deletion, we have therefore created mice deleted for LKB1 with the RIP2.Cre transgene. In marked contrast to βAMPKdKO mice, βLKB1KO mice showed diminished food intake and weight gain, enhanced insulin secretion, unchanged insulin sensitivity, and improved glucose tolerance. In line with the phenotype of Pdx1- CreER mice, total β-cell mass and the size of individual islets and β-cells were increased and islet architecture was markedly altered in βLKB1KO islets. Signaling by mammalian target of rapamycin (mTOR) to eIF4-binding protein-1 and ribosomal S6 kinase was also enhanced. In contrast to Pdx1- CreER-mediated deletion, the expression of Glut2, glucose-induced changes in membrane potential and intracellular Ca2+ were sharply reduced in βLKB1KO mouse islets and the stimulation of insulin secretion was modestly inhibited. We conclude that LKB1 and AMPK play distinct roles in the control of insulin secretion and that the timing of LKB1 deletion, and/or its loss from extrapancreatic sites, influences the final impact on β-cell function.


2018 ◽  
Vol 51 (6) ◽  
pp. 2955-2971 ◽  
Author(s):  
Shuling Song ◽  
Jin Tan ◽  
Yuyang Miao ◽  
Zuoming Sun ◽  
Qiang  Zhang

Background/Aims: Intermittent hypoxia (IH) causes apoptosis in pancreatic β-cells, but the potential mechanisms remain unclear. Endoplasmic reticulum (ER) stress, autophagy, and apoptosis are interlocked in an extensive crosstalk. Thus, this study aimed to investigate the contributions of ER stress and autophagy to IH-induced pancreatic β-cell apoptosis. Methods: We established animal and cell models of IH, and then inhibited autophagy and ER stress by pharmacology and small interfering RNA (siRNA) in INS-1 cells and rats. The levels of biomarkers for autophagy, ER stress, and apoptosis were evaluated by immunoblotting and immunofluorescence. The number of autophagic vacuoles was observed by transmission electron microscopy. Results: IH induced autophagy activation both in vivo and in vitro, as evidenced by increased autophagic vacuole formation and LC3 turnover, and decreased SQSTM1 level. The levels of ER-stress-related proteins, including GRP78, CHOP, caspase 12, phosphorylated (p)-protein kinase RNA-like ER kinase (PERK), p-eIF2α, and activating transcription factor 4 (ATF4) were increased under IH conditions. Inhibition of ER stress with tauroursodeoxycholic acid or 4-phenylbutyrate partially blocked IH-induced autophagy in INS-1 cells. Furthermore, inhibition of PERK with GSK2606414 or siRNA blocked the ERstress-related PERK/eIF2α/ATF4 signaling pathway and inhibited autophagy induced by IH, which indicates that IH-induced autophagy activation is dependent on this signaling pathway. Promoting autophagy with rapamycin alleviated IH-induced apoptosis, whereas inhibition of autophagy with chloroquine or autophagy-related gene (Atg5 and Atg7) siRNA aggravated pancreatic β-cell apoptosis caused by IH. Conclusion: IH induces autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 signaling pathway, which is a protective response to pancreatic β-cell apoptosis caused by IH.


2018 ◽  
Vol 97 ◽  
pp. 1229-1237 ◽  
Author(s):  
Chen-guang Li ◽  
Chang-lin Ni ◽  
Min Yang ◽  
Yun-zhao Tang ◽  
Zhu Li ◽  
...  

2012 ◽  
pp. 235-243 ◽  
Author(s):  
Norman Balcazar Morales ◽  
Cecilia Aguilar de Plata

Growth factors, insulin signaling and nutrients are important regulators of β-cell mass and function. The events linking these signals to regulation of β-cell mass are not completely understood. Recent findings indicate that mTOR pathway integrates signals from growth factors and nutrients with transcription, translation, cell size, cytoskeleton remodeling and mitochondrial metabolism. mTOR is a part of two distinct complexes; mTORC1 and mTORC2. The mammalian TORC1 is sensitive to rapamycin and contains Raptor, deptor, PRAS40 and the G protein β-subunit-like protein (GβL). mTORC1 activates key regulators of protein translation; ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1. This review summarizes current findings about the role of AKT/mTORC1 signaling in regulation of pancreatic β cell mass and proliferation. mTORC1 is a major regulator of β-cell cycle progression by modulation of cyclins D2, D3 and cdk4/cyclin D activity. These studies uncovered key novel pathways controlling cell cycle progression in β-cells in vivo. This information can be used to develop alternative approaches to expand β-cell mass in vivo and in vitro without the risk of oncogenic transformation. The acquisition of such knowledge is critical for the design of improved therapeutic strategies for the treatment and cure of diabetes as well as to understand the effects of mTOR inhibitors in β-cell function.


2019 ◽  
Vol 16 (9) ◽  
pp. 4024-4030 ◽  
Author(s):  
Lieke Joosten ◽  
Maarten Brom ◽  
Hanneke Peeters ◽  
Desirée Bos ◽  
Eddy Himpe ◽  
...  
Keyword(s):  

EBioMedicine ◽  
2017 ◽  
Vol 15 ◽  
pp. 163-172 ◽  
Author(s):  
Sohei Tsukita ◽  
Tetsuya Yamada ◽  
Kei Takahashi ◽  
Yuichiro Munakata ◽  
Shinichiro Hosaka ◽  
...  

Diabetes ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Patrick F. Antkowiak ◽  
Brian K. Stevens ◽  
Craig S. Nunemaker ◽  
Marcia McDuffie ◽  
Frederick H. Epstein

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Karla E. Merz ◽  
Miwon Ahn ◽  
Ragadeepthi Tunduguru ◽  
Vishal A. Salunkhe ◽  
Erika M. Olson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document