scholarly journals Functional characterization of four novel PAX8 mutations causing congenital hypothyroidism: new evidence for haploinsufficiency as a disease mechanism

2012 ◽  
Vol 167 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Satoshi Narumi ◽  
Shunsuke Araki ◽  
Naoaki Hori ◽  
Koji Muroya ◽  
Yukiyo Yamamoto ◽  
...  

Background Individuals carrying a heterozygous inactivating PAX8 mutation are affected by congenital hypothyroidism (CH), although heterozygous Pax8 knockout mice are not. It has remained unclear whether CH in PAX8 mutation carriers is caused by haploinsufficiency or a dominant negative mechanism. Objective To report clinical and molecular findings of four novel PAX8 mutations, including one early-truncating frameshift mutation. Subjects and methods Four probands were CH patients. Two had family history of congenital or childhood hypothyroidism. Three probands were diagnosed in the frame of newborn screening for CH, while one had a negative result in screening but was diagnosed subsequently. Three had thyroid hypoplasia and one had a slightly small thyroid with low echogenicity. For these probands and their family members, we sequenced PAX8 using a standard PCR-based method. Pathogenicity of identified mutations was verified in vitro. Results We found four novel heterozygous PAX8 mutations in the four probands: L16P, F20S, D46SfsX24, and R133Q. Family studies showed four additional mutation carriers, who were confirmed to have high serum TSH levels. Expression experiments revealed that three mutations (L16P, F20S, and R133Q) had defects in target DNA binding, while D46fs had protein instability that was rescued by the proteasome inhibitor MG132. All four mutations had reduced transactivation on the thyroglobulin promoter, supporting that they were inactivating mutations. Conclusion D46fs is the first PAX8 mutation with confirmed protein instability. Our clinical and in vitro findings together suggest that pure PAX8 haploinsufficiency can cause CH in humans.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Huan-Yun Chen ◽  
Chia-Lang Hsu ◽  
Han-Yi Lin ◽  
Yung-Feng Lin ◽  
Shih-Feng Tsai ◽  
...  

Abstract Background Heterozygous pathogenic variants in STUB1 are implicated in autosomal dominant spinocerebellar ataxia type 48 (SCA48), which is a rare familial ataxia disorder. We investigated the clinical, genetic and functional characteristics of STUB1 mutations identified from a Taiwanese ataxia cohort. Methods We performed whole genome sequencing in a genetically undiagnosed family with an autosomal dominant ataxia syndrome. Further Sanger sequencing of all exons and intron–exon boundary junctions of STUB1 in 249 unrelated patients with cerebellar ataxia was performed. The pathogenicity of the identified novel STUB1 variant was investigated. Results We identified a novel heterozygous frameshift variant, c.832del (p.Glu278fs), in STUB1 in two patients from the same family. This rare mutation is located in the U-box of the carboxyl terminus of the Hsc70-interacting protein (CHIP) protein, which is encoded by STUB1. Further in vitro experiments demonstrated that this novel heterozygous STUB1 frameshift variant impairs the CHIP protein’s activity and its interaction with the E2 ubiquitin ligase, UbE2D1, leading to neuronal accumulation of tau and α-synuclein, caspase-3 activation, and promoting cellular apoptosis through a dominant-negative pathogenic effect. The in vivo study revealed the influence of the CHIP expression level on the differentiation and migration of cerebellar granule neuron progenitors during cerebellar development. Conclusions Our findings provide clinical, genetic, and a mechanistic insight linking the novel heterozygous STUB1 frameshift mutation at the highly conserved U-box domain of CHIP as the cause of autosomal dominant SCA48. Our results further stress the importance of CHIP activity in neuronal protein homeostasis and cerebellar functions.


2000 ◽  
Author(s):  
Yoram Eyal ◽  
Sheila McCormick

During the evolutionary process of speciation in plants, naturally occurring barriers to reproduction have developed that affect the transfer of genes within and between related species. These barriers can occur at several different levels beginning with pollination-barriers and ending with hybrid-breakdown. The interaction between pollen and pistils presents one of the major barriers to intra- and inter-specific crosses and is the focus of this research project. Our long-term goal in this research proposal was defined to resolve questions on recognition and communication during pollen-pistil interactions in the extended tomato family. In this context, this work was initiated and planned to study the potential involvement of tomato pollen-specific receptor-like kinases (RLK's) in the interaction between pollen and pistils. By special permission from BARD the objectives of this research were extended to include studies on pollen-pistil interactions and pollination barriers in horticultural crops with an emphasis on citrus. Functional characterization of 2 pollen-specific RLK's from tomato was carried out. The data shows that both encode functional kinases that were active as recombinant proteins. One of the kinases was shown to accumulate mainly after pollen germination and to be phosphorylated in-vitro in pollen membranes as well as in-vivo. The presence of style extract resulted in dephosphorylation of the RLK, although no species specificity was observed. This data implies a role for at least one RLK in pollination events following pollen germination. However, a transgenic plant analysis of the RLK's comprising overexpression, dominant-negative and anti-sense constructs failed to provide answers on their role in pollination. While genetic effects on some of the plants were observed in both the Israeli and American labs, no clear functional answers were obtained. An alternative approach to addressing function was pursued by screening for an artificial ligand for the receptor domain using a peptide phage display library. An enriched peptide sequence was obtained and will be used to design a peptide-ligand to be tested for its effect o pollen germination and tube growth. Self-incompatibility (SI) in citrus was studied on 3 varieties of pummelo. SI was observed using fluorescence microscopy in each of the 3 varieties and compatibility relations between varieties was determined. An initial screen for an S-RNase SI mechanism yielded only a cDNA homologous to the group of S-like RNases, suggesting that SI results from an as yet unknown mechanism. 2D gel electrophoresis was applied to compare pollen and style profiles of different compatibility groups. A "polymorphic" protein band from style extracts was observed, isolated and micro-sequenced. Degenerate primers designed based on the peptide sequence date will be used to isolate the relevant genes i order to study their potential involvement in SI. A study on SI in the apple cultivar Top red was initiated. SI was found, as previously shown, to be complete thus requiring a compatible pollinator variety. A new S-RNase allele was discovered fro Top red styles and was found to be highly homologous to pear S-RNases, suggesting that evolution of these genes pre-dated speciation into apples and pears but not to other Rosaceae species. The new allele provides molecular-genetic tools to determine potential pollinators for the variety Top red as well as a tool to break-down SI in this important variety.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Marilin Sophia Koch ◽  
Stefan Czemmel ◽  
Felix Lennartz ◽  
Sarah Beyeler ◽  
Srinath Rajaraman ◽  
...  

Abstract Background The overexpression of (basic)helix-loop-helix ((b)HLH) transcription factors (TFs) is frequent in malignant glioma. We investigated molecular effects upon disruption of the (b)HLH network by a dominant-negative variant of the E47 protein (dnE47). Our goal was to identify novel molecular subgroup-specific therapeutic strategies. Methods Glioma cell lines LN229, LNZ308, and GS-2/GS-9 were lentivirally transduced. Functional characterization included immunocytochemistry, immunoblots, cytotoxic, and clonogenic survival assays in vitro, and latency until neurological symptoms in vivo. Results of cap analysis gene expression and RNA-sequencing were further validated by immunoblot, flow cytometry, and functional assays in vitro. Results The induction of dnE47-RFP led to cytoplasmic sequestration of (b)HLH TFs and antiglioma activity in vitro and in vivo. Downstream molecular events, ie, alterations in transcription start site usage and in the transcriptome revealed enrichment of cancer-relevant pathways, particularly of the DNA damage response (DDR) pathway. Pharmacologic validation of this result using ataxia telangiectasia and Rad3 related (ATR) inhibition led to a significantly enhanced early and late apoptotic effect compared with temozolomide alone. Conclusions Gliomas overexpressing (b)HLH TFs are sensitive toward inhibition of the ATR kinase. The combination of ATR inhibition plus temozolomide or radiation therapy in this molecular subgroup are warranted.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Nathan Michael Chasen ◽  
Menna Grace Etheridge ◽  
Ronald Drew Etheridge

ABSTRACT Of the pathogenic trypanosomatids, Trypanosoma cruzi alone retains an ancient feeding apparatus known as the cytostome-cytopharynx complex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in T. cruzi. Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis in vitro. To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work. Thereupon, we identified three additional orphan myosin motors, two of which (MyoB and MyoE) were targeted to the preoral ridge region adjacent to the cytostome entrance and another (MyoC) which was targeted to the cytopharynx tubular structure similar to that of MyoF. Additionally, we show that the C-terminal tails of each myosin are sufficient for targeting a fluorescent reporter to SPC subregions. This work highlights a potential mechanism used by the SPC to drive the inward flow of material for digestion and unveils a new level of overlapping complexity in this system with four distinct myosin isoforms targeted to this feeding structure. IMPORTANCE The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen.


2018 ◽  
Vol 178 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Kiyomi Abe ◽  
Satoshi Narumi ◽  
Ayuko S. Suwanai ◽  
Masanori Adachi ◽  
Koji Muroya ◽  
...  

Objective Biallelic TSHR mutations cause congenital hypothyroidism (CH). Serum TSH levels of monoallelic mutation carriers range from normal to mildly elevated, and thus the size of its effect remains unclear. The objectives were to examine the association between monoallelic TSHR mutations and positivity at newborn screening (NBS) for CH, and to test whether the association was modified by another genetic factor. Subjects and methods We enrolled 395 patients that had a positive result in NBS and sequenced TSHR. Monoallelic TSHR mutation carriers were further sequenced for DUOX2. Molecular functions of the mutations were verified in vitro. The frequency of the mutations in the study subjects was compared with a theoretical value in the Japanese general population. Odds ratio (OR) for NBS positivity associated with the mutation was calculated. Using Bayes’ theorem, we estimated a posterior probability of NBS positivity given the mutation. Results Twenty-six monoallelic TSHR mutation carriers were found. Four out of the 26 also had a monoallelic DUOX2 mutation (double heterozygotes). The frequencies of monoallelic TSHR mutation carriers (6.6%) and double heterozygotes (1.0%) were significantly higher than those in the general population (0.58% and 0.0087%, respectively). OR for NBS positivity of having a monoallelic TSHR mutation or being a double heterozygote was 12.0 or 117.9, respectively. Posterior probability of NBS positivity was 0.38% in monoallelic TSHR mutation carriers and 3.8% in double heterozygotes. Conclusions Monoallelic TSHR mutations are significantly associated with NBS positivity, and the association is further strengthened by the coexistence of monoallelic DUOX2 mutations.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


Sign in / Sign up

Export Citation Format

Share Document