scholarly journals From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network

2016 ◽  
Vol 175 (6) ◽  
pp. P1-P17 ◽  
Author(s):  
Susanne Thiele ◽  
Giovanna Mantovani ◽  
Anne Barlier ◽  
Valentina Boldrin ◽  
Paolo Bordogna ◽  
...  

Objective Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. Design and methods Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. Results and conclusions After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term ‘inactivating PTH/PTHrP signalling disorder’ (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like ‘pseudo’ and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Jianjiao Ni ◽  
Xiaofei Zhang ◽  
Juan Li ◽  
Zhiqin Zheng ◽  
Junhua Zhang ◽  
...  

AbstractBone is a frequent metastatic site of non-small cell lung cancer (NSCLC), and bone metastasis (BoM) presents significant challenges for patient survival and quality of life. Osteolytic BoM is characterised by aberrant differentiation and malfunction of osteoclasts through modulation of the TGF-β/pTHrP/RANKL signalling pathway, but its upstream regulatory mechanism is unclear. In this study, we found that lncRNA-SOX2OT was highly accumulated in exosomes derived from the peripheral blood of NSCLC patients with BoM and that patients with higher expression of exosomal lncRNA-SOX2OT had significantly shorter overall survival. Additionally, exosomal lncRNA-SOX2OT derived from NSCLC cells promoted cell invasion and migration in vitro, as well as BoM in vivo. Mechanistically, we discovered that NSCLC cell-derived exosomal lncRNA-SOX2OT modulated osteoclast differentiation and stimulated BoM by targeting the miRNA-194-5p/RAC1 signalling axis and TGF-β/pTHrP/RANKL signalling pathway in osteoclasts. In conclusion, exosomal lncRNA-SOX2OT plays a crucial role in promoting BoM and may serve as a promising prognostic biomarker and treatment target in metastatic NSCLC.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 875
Author(s):  
Karlijn Pellikaan ◽  
Geeske M. van Woerden ◽  
Lotte Kleinendorst ◽  
Anna G. W. Rosenberg ◽  
Bernhard Horsthemke ◽  
...  

Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader–Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the ‘Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations’ (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype–phenotype relationship in PWS.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Suowen Xu ◽  
Marina Koroleva ◽  
Keigi Fujiwara ◽  
Zheng Gen Jin

Introduction: Impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued NO production is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Specific signaling cascades, generated by vascular endothelial cells (ECs) in response to laminar flow, modulate EC structure and functions, NO production in particular. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation. However, the upstream mechanism that regulates Gab1 tyrosine phosphorylation remains unclear. Hypothesis: We hypothesized that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Methods: Western blot, en face staining and voluntary wheel running. Results: Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in a flow signaling pathway as well as HGF-induced signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K by LY294002 decreased flow, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. Conclusions: These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs


2017 ◽  
Vol 43 (5) ◽  
pp. 2074-2087 ◽  
Author(s):  
Liling Yang ◽  
Xiangjun Zhou ◽  
Weijuan Huang ◽  
Qin Fang ◽  
Jianlan Hu ◽  
...  

Background/Aims: Forsythia suspensa Vahl. (Oleaceae) fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN), the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF-α expression. Conclusion: This study provides a rationale for the clinical application of PHN as an anti-inflammatory agent.


2019 ◽  
Author(s):  
Lucas Alvizi ◽  
Luciano Abreu Brito ◽  
Bárbara Bischain ◽  
Camila Bassi Fernandes da Silva ◽  
Sofia Ligia Guimaraes Ramos ◽  
...  

AbstractNon-syndromic cleft lip/palate (NSCLP), the most common human craniofacial malformations, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological and epigenetic findings. Association of epigenetic variations with NSCLP has been made, however still of little functional investigation. Here we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a frequent differentially methylated region in mir152, hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial impairment analogue to palatal defects. Also, we demonstrated that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogue palatal alterations. We therefore suggest mir152 hypomethylation, potentially induced by hypoxia in early development, as a novel and frequent predisposing factor to NSCLP.


2020 ◽  
Author(s):  
Jessica Gartrell ◽  
Marcia Mellado-Largarde ◽  
Nancy E. Martinez ◽  
Michael R. Clay ◽  
Armita Bahrami ◽  
...  

AbstractPediatric sarcomas represent a heterogeneous group of malignancies that exhibit variable response to DNA damaging chemotherapy. Schlafen family member 11 protein (SLFN11) increases sensitivity to replicative stress, and SLFN11 gene silencing has been implicated as a common mechanism of drug resistance in tumors in adults. We found SLFN11 to be widely expressed in our cohort of pediatric sarcomas. In sarcoma cell lines, protein expression strongly correlated with response to the PARP inhibitor talazoparib (TAL) and the topoisomerase I inhibitor irinotecan (IRN), with SLFN11 knockout resulting in significant loss of sensitivity in vitro and in vivo. However, SLFN11 expression was not associated with favorable outcomes in a retrospective analysis of our patient cohort; instead, the protein was retained and promoted tumor growth and evasion. Furthermore, we show that pediatric sarcomas develop resistance to TAL and IRN through impaired intrinsic apoptosis, and that resistance can be reversed by selective inhibition of BCL-XL.Statement of SignificanceThe role of SLFN11 in pediatric sarcomas has not been thoroughly explored. In contrast to its activity in adult tumors, SLFN11 did not predict favorable outcomes in pediatric patients, was not silenced, and promoted tumor growth. Resistance to replicative stress in SLFN11-expressing sarcomas was reversed by selective inhibition of BCL-XL.


2015 ◽  
Vol 69 (3-4) ◽  
pp. 245-258
Author(s):  
Dijana Topalovic ◽  
Lada Zivkovic ◽  
Ninoslav Djelic ◽  
Vladan Bajic ◽  
Andrea Cabarkapa ◽  
...  

Hormones are cellular products involved in the regulation of a large number of processes in living systems, and which by their actions affect the growth, function and metabolism of cells. Considering that hormones are compounds normally present in the organism, it is important to determine if they can, under certain circumstances, lead to genetic changes in the hereditary material. Numerous experimental studies in vitro and in vivo in different systems, from bacteria to mammals, dealt with the mutagenic and genotoxic effects of hormones. This work presents an overview of the research on genotoxic effects of non?steroidal hormones, although possible changes of genetic material under their influence have not still been known enough, and moreover, investigations on their genotoxic influence have given conflicting results. The study results show that mechanisms of genotoxic effect of nonsteroidal hormones are manifested through the increase of oxidative stress by arising reactive oxygen species. A common mechanism of ROS occurence in thyroid hormones and catecholamines is through metabolic oxidation of their phenolic groups. Manifestation of insulin genotoxic effect is based on production of ROS by activation of NADPH isophorms, while testing oxytocin showed absence of genotoxic effect. Considering that the investigations on genotoxicity of nonsteroidal hormones demonstrated both positive and negative results, the explanation of this discordance involve limitations of test systems themselves, different cell types or biological species used in the experiments, different level of reactivity in vitro and in vivo, as well as possible variations in a tissue-specific expression. Integrated, the provided data contribute to better understanding of genotoxic effect of nonsteroidal hormones and point out to the role and mode of action of these hormones in the process of occurring of effects caused by oxidative stress.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Mathieu R Brodeur ◽  
David Rhainds ◽  
Daniel Charpentier ◽  
Téodora Mihalache-Avram ◽  
Cyrille Maugeais ◽  
...  

Introduction: A potential approach to reduce CV risk is to increase HDL-C levels. This could be achieved by reducing cholesteryl ester transfer protein (CETP) activity. Dalcetrapib, which modulates CETP activity by changing its conformation and raises HDL-C without inhibiting CETP-induced pre-β-HDL formation in humans, was shown to decrease progression of atherosclerosis in rabbits. Hypothesis: Investigate the modifications of HDL particle size distribution and cholesterol efflux capacity of serum produced by dalcetrapib in normocholesterolemic rabbits. Methods: New Zealand white rabbits were treated with dalcetrapib (300 mg/kg as food admix) or placebo for 14 days. We evaluated CETP conformation and mass by ELISAs (including antibodies sensitive to conformational change), CETP activity by fluorescent lipid transfer, lipid profile and apoA-I distribution in HDL subclasses by 2D-non denaturing gradient gels (2D-NDGGE). Cholesterol efflux capacity of rabbit sera was determined after loading cells with 3 H-free cholesterol, using HepG2 hepatocytes to measure SR-BI-dependent efflux and by inducing ABCA1 or ABCG1 expression in BHK cells. Results: Dalcetrapib modified the conformation of rabbit CETP in vitro and in vivo and, after 14 days, this was associated with increased CETP mass (+50%, p<0.001) and reduced CETP activity (-86%, p<0.001). Total cholesterol was increased with dalcetrapib (+178%, p<0.001), due to a higher HDL-C level. In contrast, dalcetrapib reduced LDL-C and triglycerides by 41% (p<0.01) and 48% (p<0.001). Serum analysis by 2D-NDGGE showed that total rabbit apoA-I was increased 1.7- fold in animals treated with dalcetrapib. This was associated with an increase in large HDL but also in small α-migrating HDL with pre-β-HDL size. Cholesterol efflux assays showed that ABCA1-, ABCG1- and SR-BI-dependent efflux were all increased in dalcetrapib-treated rabbits (+24%, p=0.038; +21%, p=0.021; +44%, p<0.001). Conclusion: Modulation of CETP activity and conformation by dalcetrapib increases HDL-C and apoA-I levels and affects apoA-I distribution in HDL subclasses. These changes are associated with increased cholesterol efflux capacity, suggesting that HDL functionality is preserved in dalcetrapib-treated chow-fed rabbits.


Sign in / Sign up

Export Citation Format

Share Document