scholarly journals Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish

2017 ◽  
Vol 43 (5) ◽  
pp. 2074-2087 ◽  
Author(s):  
Liling Yang ◽  
Xiangjun Zhou ◽  
Weijuan Huang ◽  
Qin Fang ◽  
Jianlan Hu ◽  
...  

Background/Aims: Forsythia suspensa Vahl. (Oleaceae) fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN), the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF-α expression. Conclusion: This study provides a rationale for the clinical application of PHN as an anti-inflammatory agent.

2021 ◽  
Vol 12 ◽  
Author(s):  
Acharya Balkrishna ◽  
Meenu Tomer ◽  
Moumita Manik ◽  
Jyotish Srivastava ◽  
Rishabh Dev ◽  
...  

The time-tested Ayurvedic medicinal food, Chyawanprash, has been a part of the Indian diet since ancient times. It is an extremely concentrated mixture of extracts from medicinal herbs and processed minerals, known for its immunity boosting, rejuvenating, and anti-oxidative effects. In this study, we have evaluated the anti-inflammatory potential of Patanjali Special Chyawanprash (PSCP) using the zebrafish model of inflammation. Zebrafish were fed on PSCP-infused pellets at stipulated doses for 13 days before inducing inflammation through lipopolysaccharide (LPS) injection. The test subjects were monitored for inflammatory pathologies like behavioral fever, hyperventilation, skin hemorrhage, locomotory agility, and morphological anomaly. PSCP exerted a strong prophylactic effect on the zebrafish that efficiently protected them from inflammatory manifestations at a human equivalent dose. Expression levels of pro-inflammatory cytokines, like interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β), were also reduced in the LPS-stimulated zebrafish fed on PSCP-infused pellets. Skin hemorrhage, hyperventilation, and loss of caudal fins are characteristics of LPS-induced inflammation in zebrafish. PSCP prophylactically ameliorated skin hemorrhage, restored normal respiration, and prevented loss of caudal fin in inflamed zebrafish. Under in vitro conditions, PSCP reduced IL-6 and TNF-α secretion by THP-1 macrophages in a dose-dependent manner by targeting NF-κB signaling, as evident from the secreted embryonic alkaline phosphatase (SEAP) reporter assay. These medicinal benefits of PSCP can be attributed to its constitutional bioactive components. Taken together, these observations provide in vivo validation of the anti-inflammatory property and in vitro insight into the mode-of-action of Chyawanprash, a traditionally described medicinal food.


1998 ◽  
Vol 42 (11) ◽  
pp. 2824-2829 ◽  
Author(s):  
Seiichi Kobayashi ◽  
Tsutomu Kawata ◽  
Akifumi Kimura ◽  
Kaname Miyamoto ◽  
Koichi Katayama ◽  
...  

ABSTRACT As a consequence of blood-borne bacterial sepsis, endotoxin or lipopolysaccharide (LPS) from the cell walls of gram-negative bacteria can trigger an acute inflammatory response, leading to a series of pathological events and often resulting in death. To block this inflammatory response to endotoxin, a novel lipid A analogue, E5531, was designed and synthesized as an LPS antagonist, and its biological properties were examined in vitro and in vivo. In murine peritoneal macrophages, E5531 inhibited the release of tumor necrosis factor alpha (TNF-α) by Escherichia coli LPS with a 50% inhibitory concentration (IC50) of 2.2 nM, while E5531 elicited no significant increases in TNF-α on its own. In support of a mechanism consistent with antagonism of binding to a cell surface receptor for LPS, E5531 inhibited equilibrium binding of radioiodinated LPS ([125I]2-(r-azidosalicylamido)-1, 3′-dithiopropionate-LPS) to mouse macrophages with an IC50 of 0.50 μM. E5531 inhibited LPS-induced increases in TNF-α in vivo when it was coinjected with LPS into C57BL/6 mice primed with Mycobacterium bovis bacillus Calmette-Guérin (BCG). In this model, the efficacy of E5531 was inversely correlated to the LPS challenge dose, consistent with a competitive antagonist-like mechanism of action. Blockade of the inflammatory response by E5531 could further be demonstrated in other in vivo models: E5531 protected BCG-primed mice from LPS-induced lethality in a dose-dependent manner and suppressed LPS-induced hepatic injury in Propionibacterium acnes-primed or galactosamine-sensitized mice. These results argue that the novel synthetic lipid A analogue E5531 can antagonize the action of LPS in in vitro and suppress the pathological effects of LPS in vivo in mice.


2021 ◽  
Vol 6 (5) ◽  

We have established that the peptide LKEKK (Np5) corresponding to the sequence 16-20 of thymosin-α1 and to the sequence 131-135 of interferon-α2, in the concentration range 50 300 µg/ear reduces in a dose-dependent manner phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice .Tested in parallel peptide with inverted sequence (iNp5, KKEKL, 150-300 µg/ear) was inactive, indicating high specificity of the Np5 action. In the concentration range of 5 20 µM Np5 significantly decrease the TNF-α-induced production by normal human keranocytes of pro-inflammatory mediators IL-6 and IL-1β. Thus, Np5t has a pronounced anti-inflammatory activity in vivo and in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huifang Yin ◽  
Guanhong Xue ◽  
Ailing Dai ◽  
Haichong Wu

Mastitis is a worldwide production disease in dairy cows, which mainly affects milk yield, causing huge economic losses to dairy farmers. Lentinan is a kind of polysaccharide extracted from Lentinus edodes, which has no toxicity and possesses various pharmacological activities including antibacterial and immunomodulatory effects. Therefore, the anti-inflammatory function of lentinan on LPS-stimulated mastitis was carried out, and the mechanism involved was explored. In vivo, lentinan greatly reduced LPS-stimulated pathological injury, myeloperoxidase (MPO) activity, and the proinflammatory factor production (TNF-α and IL-1β) in mice. Further study was performed to determine the activation of the Wnt/β-catenin pathway during LPS stimulation. These results suggested that LPS-induced activation of the Wnt/β-catenin pathway was suppressed by lentinan administration. In vitro, we observed that the mouse mammary epithelial cell (mMEC) viability was not affected by lentinan treatment. As expected, LPS increased the TNF-α and IL-1β protein secretion and the activation of the Wnt/β-catenin pathway that was inhibited by lentinan administration in a dose-dependent manner in mMECs. Conclusively, lentinan exerts the anti-inflammatory function in LPS-stimulated mastitis via inhibiting the activation of the Wnt/β-catenin pathway. Thus, the results of our study also gave an insight that lentinan may serve as a potential treatment for mastitis.


2021 ◽  
Vol 6 (5) ◽  

We have established that the peptide LKEKK (Np5) corresponding to the sequence 16-20 of thymosin-α1 and to the sequence 131-135 of interferon-α2, in the concentration range 50 300 µg/ear reduces in a dose-dependent manner phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice .Tested in parallel peptide with inverted sequence (iNp5, KKEKL, 150-300 µg/ear) was inactive, indicating high specificity of the Np5 action. In the concentration range of 5 20 µM Np5 significantly decrease the TNF-α-induced production by normal human keranocytes of pro-inflammatory mediators IL-6 and IL-1β. Thus, Np5t has a pronounced anti-inflammatory activity in vivo and in vitro.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 370-370
Author(s):  
Lauren L Kovanda ◽  
Monika Hejna ◽  
Yanhong Liu

Abstract The aim of this experiment was to examine the anti-inflammatory effects of butyric acid, sodium butyrate, monobutyrin and tributyrin using porcine alveolar macrophages (PAMs). PAMs were isolated from the bronchial lavage of 6 piglets at 6 weeks of age, and then seeded at 106 cells/mL in 24-well plates. After 24 h incubation, cells were treated with different treatments in a randomized complete block design with 10 replicates. The treatments were in a factorial arrangement with 2 doses of lipopolysaccharide (LPS, 0 or 1 μg/mL) and 5 levels of organic acid (0, 0.5, 1, 2, 4 mM for butyric acid and tributyrin and 0, 1, 2, 4, 8 mM for sodium butyrate and monobutyrin). Supernatants were collected after another 24 h incubation and analyzed for tumor necrosis factor alpha (TNF-α). Cell viability was also tested by the MTT assay. Data were analyzed using the MIXED procedure of SAS. No cytotoxic effect was observed in LPS challenge and each organic acid with the percentage of live cells was more than 76% in comparison to the sham control. Sodium butyrate at 2 and 4 mM dose exhibited (P < 0.01) a stimulatory effect on cell proliferation. LPS challenge remarkably stimulated (P < 0.0001) TNF-α secretion from PAMs. In the non-challenge group, butyric acid, monobutyrin, and tributyrin linearly reduced TNF-α production from PAMs, whereas 2 mM sodium butyrate tended to increase (P = 0.056) TNF-α secretion from PAMs. In the LPS challenge group, all tested organic acid dose-dependently reduced (P < 0.001) TNF-α production from LPS-challenged PAMs, with the strongest inhibiting effect observed at the highest dose. Results indicated that butyric acid and its derivatives that were tested in the current experiment all had strong anti-inflammatory activities in vitro.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Sign in / Sign up

Export Citation Format

Share Document