scholarly journals Adaptation of pancreatic islet B-cells during the last third of pregnancy: regulation of B-cell function and proliferation by lactogenic hormones in rats

1999 ◽  
pp. 419-425 ◽  
Author(s):  
M Kawai ◽  
K Kishi

In rodents, placental lactogen (PL)-I is considered to be the first trigger to enhance pancreatic islet B-cell function, and after its secretion is diminished at mid-pregnancy, PL-II takes over this role. However, little information is available on the regulation of islet B-cell function and proliferation by lactogenic hormones during the last third of pregnancy. This was the focus of the present study using rats in which pregnancy was forcibly prolonged. This rat possesses unique characteristics in that PL-I is re-secreted during the prolonged period of pregnancy and the peak concentrations in maternal circulation are comparable with those observed during mid-pregnancy in normal-pregnancy rats. Pregnancy was prolonged by successive administration of pregnant mare's serum gonadotropin (30IU/rat, s.c. on day 12) and human chorionic gonadotropin (10IU/rat, i.v. on day 14). When the insulin secretory responses to 10mmol/l glucose in islets obtained from normal-pregnancy and prolonged-pregnancy rats were tested, each insulin secretory response correlated well with the values of plasma lactogenic activity throughout the period of pregnancy and lactation. Examination of B-cell proliferation in normal-pregnancy rats showed that 5-bromo-2'-deoxyuridine (BrdU) incorporation into dividing B-cells reached a maximum on day 15 and then decreased markedly towards term. No increase in B-cell proliferation was observed on day 19 when plasma lactogenic activity reached the maximum. In prolonged-pregnancy rats, BrdU incorporation also continued to decrease as observed in normal-pregnancy rats after day 15, and then no enhancement in B-cell proliferation was observed even when the plasma lactogenic activity, including re-secreted PL-I, reached maximum. These results suggest that, in the last third of pregnancy, B-cell proliferation is no longer stimulated by lactogenic hormones in contrast to the insulin secretory response which is sustained.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Guillamat-Prats ◽  
D Hering ◽  
M Rami ◽  
C Haerdtner ◽  
L Bindila ◽  
...  

Abstract Background Atherosclerosis is accompanied by an imbalance between resolving and pro-inflammatory lipid mediators. Targeting lipid signaling pathways might offer a new anti-inflammatory therapy for improving the clinical outcome in cardiovascular disease patients. We considered lysophosphatidylinositol (LPI) and its receptor G protein-coupled receptor (GPR)55 as a potential modulator of atherosclerosis. Its role in regulating atherosclerosis and B cell function is unknown. Hypothesis We assessed the hypothesis that GPR55 signaling causally affects atherosclerosis and whether it has a specific role in regulating B cell function in this disease. Methods Atherosclerotic plaques were compared between apolipoprotein E deficient (ApoE−/−) and ApoE−/−Gpr55−/− mice after 4 to 16 weeks Western Diet (WD; 0.15% cholesterol; n=12–15 per group). To specifically test the role of B cell GPR55 in atherosclerosis, we generated mixed chimeras by lethally irradiating low density lipoprotein receptor deficient (Ldlr−/−) mice and reconstituting with a mixture of μMT and wildtype (control) or μMT and Gpr55−/− bone marrow cells. Circulating B cells were sorted and bulk RNA sequencing analysis was performed. We performed lipid and immunostainings of murine aortic root plaques, qPCR and ELISA of tissue lysates, as well as multiplex analysis of plasma immunoglobulins. Leukocyte plasma and tissue counts were determined by flow cytometry. Results GPR55 expression in mouse and human atherosclerotic plaques was detected by immunostaining. Furthermore, we confirmed murine Gpr55 mRNA expression on sorted circulating B220+B cells via qPCR, which was higher compared to CD3+ T cells, while CD11+ myeloid cells as well as NK cells had only low Gpr55 mRNA levels. ApoE−/−Gpr55−/− mice had significantly larger plaques after 4&16 weeks WD compared to ApoE−/− controls, with more pronounced body weight increases and higher cholesterol levels at the 16 weeks WD time point. In addition, global Gpr55 deficiency resulted in enhanced aortic pro-inflammatory cytokine mRNA expression (IL-1β, IL-6, TNFα) and a massively upregulated IgG1 plasma levels and increased percentages of splenic germinal center and plasma cells. B-cell RNA-seq analysis showed 460 differential expressed regulated genes in the ApoE−/−Gpr55−/− compared to ApoE−/−. The main pathways affected were calcium ion transport, immunoglobulin production, negative regulation of phosphorylation, and cellular component morphogenesis, suggesting a dsysregulation of B cell function. B cell specific Gpr55 deficiency blunted the metabolic effects on body weight and cholesterol, but still translated in larger atherosclerotic plaques and elevated plasma IgG levels compared to the respective controls. Conclusion Both global and B cell-restricted Gpr55 deficiency promotes atherosclerosis and is associated with a more pro-inflammatory phenotype. Our findings suggest a novel role for GPR55 in regulating B cell development and function. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Deutsche Forschungsgemeinschaft (DFG)


2009 ◽  
Vol 182 (5) ◽  
pp. 2827-2834 ◽  
Author(s):  
Birte Kretschmer ◽  
Katja Lüthje ◽  
Stefanie Schneider ◽  
Bernhard Fleischer ◽  
Minka Breloer
Keyword(s):  
B Cells ◽  
B Cell ◽  

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
N Chirmule ◽  
N Oyaizu ◽  
VS Kalyanaraman ◽  
S Pahwa

Abstract Despite the occurrence of hypergammaglobulinemia in human immunodeficiency virus (HIV) infection, specific antibody production and in vitro B-cell differentiation responses are frequently impaired. In this study, we have examined the effects of HIV envelope glycoprotein gp120 on T-helper cell function for B cells. In the culture system used, B-cell functional responses were dependent on T-B- cell contact, since separation of T and B cells in double chambers by Transwell membranes rendered the B cells unresponsive in assays of antigen-induced B-cell proliferation and differentiation. Cytokines secreted by T cells were also essential, since anti-CD3 monoclonal antibody (mAb)-activated, paraformaldehyde-fixed T-cell clones failed to induce B-cell proliferation and differentiation. Pretreatment of the CD4+ antigen-specific T cells with gp120 was found to impair their ability to help autologous B cells, as determined by B-cell proliferation, polyclonal IgG secretion, and antigen-specific IgG secretion. The gp120-induced inhibition was specific in that it was blocked by soluble CD4. Furthermore, only fractionated small B cells (which are T-cell-dependent in their function) manifested impaired responses when cultured with gp120-treated T cells. Antigen-induced interleukin (IL)-2 and IL-4, but not IL-6, secretion were markedly reduced in gp120-treated T-cell clones. Addition of exogenous cytokines failed to compensate for defective helper function of gp120-treated T cells. The findings in this study indicate that gp120 impairs helper functions of CD4+ T cells by interfering with T-B-cell contact- dependent interaction; the inhibitory effects of soluble envelope proteins of HIV may contribute to the immunopathogenesis of the HIV- associated disease manifestations.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3925-3932 ◽  
Author(s):  
Dong-Mei Zhao ◽  
Angela M. Thornton ◽  
Richard J. DiPaolo ◽  
Ethan M. Shevach

The suppressive capacity of naturally occurring mouse CD4+CD25+ T cells on T-cell activation has been well documented. The present study is focused on the interaction of CD4+CD25+ T cells and B cells. By coculturing preactivated CD4+CD25+ T cells with B cells in the presence of polyclonal B-cell activators, we found that B-cell proliferation was significantly suppressed. The suppression of B-cell proliferation was due to increased cell death caused by the CD4+CD25+ T cells in a cell-contact–dependent manner. The induction of B-cell death is not mediated by Fas–Fas ligand pathway, but surprisingly, depends on the up-regulation of perforin and granzymes in the CD4+CD25+ T cells. Furthermore, activated CD4+CD25+ T cells preferentially killed antigen-presenting but not bystander B cells. Our results demonstrate that CD4+CD25+ T cells can act directly on B cells and suggest that the prevention of autoimmunity by CD4+CD25+ T cells can be explained, at least in part, by the direct regulation of B-cell function.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Abstract Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2923-2930 ◽  
Author(s):  
Elie Haddad ◽  
Françoise Le Deist ◽  
Pierre Aucouturier ◽  
Marina Cavazzana-Calvo ◽  
Stephane Blanche ◽  
...  

We retrospectively analyzed the B-cell function and leukocyte chimerism of 22 patients with severe combined immunodeficiency with B cells (B+ SCID) who survived more than 2 years after bone marrow transplantation (BMT) to determine the possible consequences of BMT procedures, leukocyte chimerism, and SCID molecular deficit on B-cell function outcome. Circulating T cells were of donor origin in all patients. In recipients of HLA-identical BMT (n = 5), monocytes were of host origin in 5 and B cells were of host origin in 4 and of mixed origin in 1. In recipients of HLA haploidentical T-cell–depleted BMT (n = 17), B cells and monocytes were of host origin in 14 and of donor origin in 3. Engraftment of B cells was found to be associated with normal B-cell function. In contrast, 10 of 18 patients with host B cells still require Ig substitution. Conditioning regimen (ie, 8 mg/kg busulfan and 200 mg/kg cyclophosphamide) was shown neither to promote B-cell and monocyte engraftment nor to affect B-cell function. Eight patients with B cells of host origin had normal B-cell function. Evidence for functional host B cells was further provided in 3 informative cases by Ig allotype determination and by the detection, in 5 studied cases, of host CD27+ memory B cells as in age-matched controls. These results strongly suggest that, in some transplanted patients, host B cells can cooperate with donor T cells to fully mature in Ig-producing cells.


2014 ◽  
Vol 12 (1) ◽  
Author(s):  
Narasimhulu Simma ◽  
Tanima Bose ◽  
Sascha Kahlfuß ◽  
Judith Mankiewicz ◽  
Theresa Lowinus ◽  
...  

Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Clarissa Heck ◽  
Sophie Steiner ◽  
Eva M. Kaebisch ◽  
Marco Frentsch ◽  
Friedrich Wittenbecher ◽  
...  

IntroductionHigh-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) represents a standard treatment regime for multiple myeloma (MM) patients. Common and potentially fatal side effects after auto-HSCT are infections due to a severely compromised immune system with hampered humoral and cellular immunity. This study delineates in depth the quantitative and functional B cell defects and investigates underlying extrinsic or intrinsic drivers.MethodsPeripheral blood of MM patients undergoing high-dose chemotherapy and auto-HSCT (before high-dose chemotherapy and in early reconstitution after HSCT) was studied. Absolute numbers and distribution of B cell subsets were analyzed ex vivo using flow cytometry. Additionally, B cell function was assessed with T cell dependent (TD) and T cell independent (TI) stimulation assays, analyzing proliferation and differentiation of B cells by flow cytometry and numbers of immunoglobulin secreting cells in ELISpots.ResultsQuantitative B cell defects including a shift in the B cell subset distribution occurred after auto-HSCT. Functionally, these patients showed an impaired TD as well as TI B cell immune response. Individual functional responses correlated with quantitative alterations of CD19+, CD4+, memory B cells and marginal zone-like B cells. The TD B cell function could be partially restored upon stimulation with CD40L/IL-21, successfully inducing B cell proliferation and differentiation into plasmablasts and immunoglobulin secreting cells.ConclusionQuantitative and functional B cell defects contribute to the compromised immune defense in MM patients undergoing auto-HSCT. Functional recovery upon TD stimulation and correlation with CD4+ T cell numbers, indicate these as extrinsic drivers of the functional B cell defect. Observed correlations of CD4+, CD19+, memory B and MZ-like B cell numbers with the B cell function suggest that these markers should be tested as potential biomarkers in prospective studies.


Sign in / Sign up

Export Citation Format

Share Document