scholarly journals LHRH might act as a negative autocrine regulator of proliferation of human ovarian cancer

2000 ◽  
pp. 665-670 ◽  
Author(s):  
G Emons ◽  
S Weiss ◽  
O Ortmann ◽  
C Grundker ◽  
KD Schulz

OBJECTIVE: More than 80% of human ovarian cancers express LHRH and its receptor. The proliferation of human ovarian cancer cell lines is reduced by both LHRH agonists and antagonists. This study was designed to further clarify the possible biological function of this LHRH system. DESIGN: As LHRH agonists and antagonists uniformly reduce proliferation of human ovarian cancer in a dose-dependent way, the effect of low concentrations of authentic LHRH was studied. In addition, longer periods of treatment (up to 9 days) were analyzed. To assess the physiological role of LHRH produced by ovarian cancer cells it was neutralized by adequate concentrations of a specific LHRH antiserum. METHODS: Human ovarian cancer cells EFO-21 and EFO-27, which express LHRH and its receptor, were incubated for 1-9 days with increasing concentrations (1pmol/l to 10 micromol/l) of authentic LHRH or with concentrations of LHRH antiserum capable of neutralizing at least 1nmol/l LHRH. Proliferation was assessed by counting cells. RESULTS AND CONCLUSIONS: Authentic LHRH reduced time- and dose-dependently proliferation (by maximally mean+/-s.e.m. 32.7 +/- 4.4%, Newman-Keuls, P < 0.001) of both ovarian cancer cell lines. At very low concentrations (1pmol/l) a marginal reduction of proliferation or no effect was observed. A mitogenic effect of authentic LHRH was never detected. Treatment of ovarian cancer cell cultures with antiserum to LHRH significantly increased (up to mean+/-s.e.m. 121.0 +/- 2.8% of controls, Newman-Keuls P <0.001) proliferation of EFO-21 and EFO-27 cells. These findings suggest that LHRH produced by human ovarian cancer cells might act as a negative autocrine regulator of proliferation.

2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


2020 ◽  
Vol 168 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hui Zhao ◽  
Aixia Wang ◽  
Zhiwei Zhang

Abstract Ovarian cancer has ranked as one of the leading causes of female morbidity and mortality around the world, which affects ∼239,000 patients and causes 152,000 deaths every year. Chemotherapeutic resistance of ovarian cancer remains a devastating actuality in clinic. The aberrant upregulation of long non-coding RNA succinate dehydrogenase complex flavoprotein subunit A pseudogene 1 (lncRNA SDHAP1) in the Paclitaxel (PTX)-resistant ovarian cancer cell lines has been reported. However, studies focussed on SDHAP1 in its regulatory function of chemotherapeutic resistance in ovarian cancer are limited, and the detailed mechanisms remain unclear. In this study, we demonstrated that SDHAP1 was upregulated in PTX-resistant SKOV3 and Hey-8 ovarian cancer cell lines while the level of miR-4465 was downregulated. Knocking-down SDHAP1 induced re-acquirement of chemo-sensitivity to PTX in ovarian cancer cells in vitro. Mechanically, SDHAP1 upregulated the expression of EIF4G2 by sponging miR-4465 and thus facilitated the PTX-induced apoptosis in ovarian cancer cells. The regulation network involving SDHAP1, miR-4465 and EIF4G2 could be a potential therapy target for the PTX-resistant ovarian cancer.


2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


Author(s):  
Jillian Hurst ◽  
Nisha Mendpara ◽  
Shelley Hooks

AbstractRegulator of G-protein signalling (RGS)2 proteins critically regulate signalling cascades initiated by G-protein coupled receptors (GPCRs) by accelerating the deactivation of heterotrimeric G-proteins. Lysophosphatidic acid (LPA) is the predominant growth factor that drives the progression of ovarian cancer by activating specific GPCRs and G-proteins expressed in ovarian cancer cells. We have recently reported that RGS proteins endogenously expressed in SKOV-3 ovarian cancer cells dramatically attenuate LPA stimulated cell signalling. The goal of this study was twofold: first, to identify candidate RGS proteins expressed in SKOV-3 cells that may account for the reported negative regulation of G-protein signalling, and second, to determine if these RGS protein transcripts are differentially expressed among commonly utilized ovarian cancer cell lines and non-cancerous ovarian cell lines. Reverse transcriptase-PCR was performed to determine transcript expression of 22 major RGS subtypes in RNA isolated from SKOV-3, OVCAR-3 and Caov-3 ovarian cancer cell lines and non-cancerous immortalized ovarian surface epithelial (IOSE) cells. Fifteen RGS transcripts were detected in SKOV-3 cell lines. To compare the relative expression levels in these cell lines, quantitative real time RT-PCR was performed on select transcripts. RGS19/GAIP was expressed at similar levels in all four cell lines, while RGS2 transcript was detected at levels slightly lower in ovarian cancer cells as compared to IOSE cells. RGS4 and RGS6 transcripts were expressed at dramatically different levels in ovarian cancer cell lines as compared to IOSE cells. RGS4 transcript was detected in IOSE at levels several thousand fold higher than its expression level in ovarian cancer cells lines, while RGS6 transcript was expressed fivefold higher in SKOV-3 cells as compared to IOSE cells, and over a thousand fold higher in OVCAR-3 and Caov-3 cells as compared to IOSE cells. Functional studies of RGS 2, 6, and 19/GAIP were performed by measuring their effects on LPA stimulated production of inositol phosphates. In COS-7 cells expressing individual exogenous LPA receptors, RGS2 and RSG19/GAIP attenuated signalling initiated by LPA1, LPA2, or LPA3, while RGS6 only inhibited signalling initiated by LPA2 receptors. In SKOV-3 ovarian cancer cells, RGS2 but not RGS6 or RGS19/GAIP, inhibited LPA stimulated inositol phosphate production. In contrast, in CAOV-3 cells RGS19/GAIP strongly attenuated LPA signalling. Thus, multiple RGS proteins are expressed at significantly different levels in cells derived from cancerous and normal ovarian cells and at least two candidate RGS transcripts have been identified to account for the reported regulation of LPA signalling pathways in ovarian cancer cells.


2004 ◽  
pp. 141-149 ◽  
Author(s):  
C Grundker ◽  
L Schlotawa ◽  
V Viereck ◽  
N Eicke ◽  
A Horst ◽  
...  

BACKGROUND: The majority of human endometrial and ovarian cancer cell lines express receptors for GnRH. Their proliferation is time- and dose-dependently reduced by GnRH-I and its superagonistic analogues. Recently, we have demonstrated that, in human endometrial and ovarian cancer cell lines except for the ovarian cancer cell line EFO-27, the GnRH-I antagonist cetrorelix has antiproliferative effects comparable to those of GnRH-I agonists, indicating that the dichotomy between GnRH-I agonists and antagonists might not apply to the GnRH system in cancer cells. We were also able to show that the proliferation of human endometrial and ovarian cancer cells was dose- and time-dependently reduced by GnRH-II to a greater extent than by GnRH-I agonists. OBJECTIVE: In this study we have assessed whether or not the antiproliferative effects of the GnRH-I antagonist cetrorelix in endometrial and ovarian cancer cells are mediated through the GnRH-I receptor. METHODS: We analysed the antiproliferative effects of the GnRH-I agonist triptorelin, the GnRH-I antagonist cetrorelix and GnRH-II in a panel of endometrial and ovarian cancer cell lines expressing GnRH-I receptors, in the SK-OV-3 ovarian cancer cell line that does not express GnRH-I receptors, and in four GnRH-I receptor positive GnRH-I receptor knockout cell lines. RESULTS: We found that, after knockout of the GnRH-I receptor, the antiproliferative effects of the GnRH-I agonist triptorelin were abrogated, whereas those of the GnRH-I antagonist cetrorelix and of GnRH-II persisted. CONCLUSIONS: These data suggest that, in endometrial and ovarian cancer cells, the antiproliferative effects of cetrorelix and of GnRH-II are not mediated through the GnRH-I receptor.


2020 ◽  
Author(s):  
Jin xin Liu ◽  
Dapeng Ding ◽  
FEIYE LIU ◽  
Yizhi Chen

Abstract Background Emerging evidence shows that the deregulation of tripartite motif (TRIM) family proteins have various functions in cellular processes and play important role in innate immunity, nervous system diseases, protein quality control and carcinogenesis. However, the precise biological function and molecular mechanism of TRIM family proteins in ovarian cancer chemo-resistance remain unclear. Methods The protein and mRNA expression of TRIM37 in ovarian cancer cell lines and patient tissues were determined using Real-time PCR and Western blot and IHC respectively. Functional assays, such as MTT, FACS, and Tunel assay used to determine the oncogenic role of TRIM37 in human ovarian cancer progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of TRIM37 promotes chemoresistance in ovarian cancer cells. Results Herein, we found that the protein and mRNA expression of TRIM37 were markedly overexpressed in ovarian cancer tissues which shown partially responded to cisplatin chemotherapy. Moreover, TRIM37 expression was inversely correlated with patient survival in our cohort HCC tissue samples and public HCC database. Overexpression of TRIM37 confers cisplatin resistance on ovarian cancer cells; but, inhibition of TRIM37 sensitized ovarian cancer cell lines to cisplatin cytotoxicity both in vitro and in vivo. Additionally, TRIM37 upregulated the levels of nuclear β-catenin, thereby activating canonical wnt/β-catenin signaling. Conclusions our results demonstrate that targeting TRIM37/β-catenin axis may represent a promising strategy to enhance cisplatin response in patients with chemo-resistant ovarian cancer.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1553
Author(s):  
Jung-A Choi ◽  
Hyunja Kwon ◽  
Hanbyoul Cho ◽  
Joon-Yong Chung ◽  
Stephen M. Hewitt ◽  
...  

Aldehyde dehydrogenase 1 family member A2 (ALDH1A2) is a rate-limiting enzyme involved in cellular retinoic acid synthesis. However, its functional role in ovarian cancer remains elusive. Here, we found that ALDH1A2 was the most prominently downregulated gene among ALDH family members in ovarian cancer cells, according to complementary DNA microarray data. Low ALDH1A2 expression was associated with unfavorable prognosis and shorter disease-free and overall survival for ovarian cancer patients. Notably, hypermethylation of ALDH1A2 was significantly higher in ovarian cancer cell lines when compared to that in immortalized human ovarian surface epithelial cell lines. ALDH1A2 expression was restored in various ovarian cancer cell lines after treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Furthermore, silencing DNA methyltransferase 1 (DNMT1) or 3B (DNMT3B) restored ALDH1A2 expression in ovarian cancer cell lines. Functional studies revealed that forced ALDH1A2 expression significantly impaired the proliferation of ovarian cancer cells and their invasive activity. To the best of our knowledge, this is the first study to show that ALDH1A2 expression is regulated by the epigenetic regulation of DNMTs, and subsequently that it might act as a tumor suppressor in ovarian cancer, further suggesting that enhancing ALDH1A2-linked signaling might provide new opportunities for therapeutic intervention in ovarian cancer.


2019 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
Somayeh Hashemi-Sheikhshabani ◽  
Zeinab Amini-Farsani ◽  
Mehdi Shamsara ◽  
Zahra Sajadpoor ◽  
Mohammad Hossein Sangtarash ◽  
...  

Background and aims: Platinum resistance has been one of the most important problems in the management of ovarian cancer. The effects of various chemotherapeutic agents are limited in patients with platinum resistance. Therefore, developing new anticancer drugs that can improve the effect of currently used cytostatics is critical. The current study investigated the effects of valproic acid (VPA) alone and in combination with cisplatin on ovarian cancer cells. Methods: In this experimental study, the human ovarian cancer cell lines (A2780-S and A2780-CP) were grown in RPMI-1640 medium in appropriate culture conditions. The cells were treated with various concentrations of cisplatin (0.15-400 µg/mL) or VPA (10-2000 µg/mL) and were incubated for 24, 48, and 72 hours. Moreover, A2780 cells were co-treated with different concentrations of cisplatin and VPA for 48 hours. Afterward, cell viability was investigated using MTT assay. GraphPad Prism statistical software was used for the data analysis and ANOVA and Duncan’s test were conducted. Results: A dose- and time-dependent reduction was observed in cell viability following the treatment with cisplatin or VPA. Moreover, cotreatment of the A2780 cells with cisplatin and VPA resulted in a significantly greater inhibition of cell viability compared to the treatment with either agent alone. Conclusion: Overall, it can be argued that VPA does not only cause inhibition of proliferation and induction of apoptosis in ovarian cancer cells but also helps to enhance the antiproliferative effects of cisplatin and results in the increased susceptibility to cisplatin in resistant cells. VPA may therefore be used to treat cancer in the future.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46120-46126 ◽  
Author(s):  
Kamila Kloudová ◽  
Hana Hromádková ◽  
Simona Partlová ◽  
Tomáš Brtnický ◽  
Lukáš Rob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document