Steroid metabolome analysis reveals that prostate cancer has potent 5[alpha]-reductase, 3[alpha]- and 17[beta]-hydroxysteroid dehydrogenase activities, but lacks 17-hydroxylase/17,20-lyase

Author(s):  
Johannes Hofland ◽  
Angela E Taylor ◽  
Orli Turgeman ◽  
Donna M O'Neil ◽  
Paul A Foster ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171871 ◽  
Author(s):  
Lucie Carolle Kenmogne ◽  
Jenny Roy ◽  
René Maltais ◽  
Mélanie Rouleau ◽  
Bertrand Neveu ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jianneng Li ◽  
Mohammad Alyamani ◽  
Ao Zhang ◽  
Kai-Hsiung Chang ◽  
Michael Berk ◽  
...  

Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation.


2010 ◽  
Vol 297 (2) ◽  
pp. 226-230 ◽  
Author(s):  
Itsuhiro Takizawa ◽  
Tsutomu Nishiyama ◽  
Noboru Hara ◽  
Tatsuhiko Hoshii ◽  
Fumio Ishizaki ◽  
...  

Endocrinology ◽  
1997 ◽  
Vol 138 (11) ◽  
pp. 4876-4882 ◽  
Author(s):  
Luigi A. M. Castagnetta ◽  
Giuseppe Carruba ◽  
Adele Traina ◽  
Orazia M. Granata ◽  
Monika Markus ◽  
...  

2012 ◽  
Vol 18 (13) ◽  
pp. 3571-3579 ◽  
Author(s):  
Rui Li ◽  
Kristen Evaul ◽  
Kamalesh K. Sharma ◽  
Kai-Hsiung Chang ◽  
Jennifer Yoshimoto ◽  
...  

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 4645-4645
Author(s):  
Nima Sharifi ◽  
Rui Li ◽  
Kristen Evaul ◽  
Kamalesh Sharma ◽  
Richard J Auchus

4645 Background: Treatment with abiraterone acetate (abi) increases the survival of men with castration-resistant prostate cancer (CRPC). Resistance to abi invariably occurs, probably due in part to up-regulation of steroidogenic enzymes and/or other mechanisms that sustain the synthesis of dihydrotestosterone (DHT), which raises the possibility of reversing resistance by concomitant inhibition of other required steroidogenic enzymes. The 1,000 mg daily abi dose was selected for the phase III trials despite the absence of dose-limiting toxicities at higher doses. Based on the 3β-hydroxyl, Δ5-structure, we hypothesized that abi also inhibits 3β-hydroxysteroid dehydrogenase/isomerase (3βHSD), which is absolutely required for the intratumoral synthesis of DHT in CRPC, regardless of origins or routes of synthesis. Methods: We tested if abi inhibits recombinant 3βHSD2 activity in vitro or endogenous 3βHSD activity in LNCaP and LAPC4 cells, including conversion of [3H]-dehydroepiandrosterone (DHEA) to androstenedione (AD), androgen receptor (AR) nuclear translocation, expression of AR-responsive genes, and LAPC4 xenograft growth in orchiectomized mice supplemented with DHEA. Results: Abi has a mixed inhibition pattern of 3βHSD2 in vitro, blocks the conversion from DHEA to AD and DHT with an IC50 of < 1 µM in CRPC cell lines, inhibits AR nuclear translocation and expression of TMPRSS2, and decreases CRPC xenograft growth in DHEA-supplemented mice. Conclusions: Abi blocks 3βHSD enzymatic activity, synthesis of AD and DHT, inhibits the AR-response, and suppresses growth of CRPC cells at concentrations that are clinically achievable. Variable abi inhibition of 3βHSD might account in part for the heterogeneous clinical response to abi. More importantly, 3βHSD inhibition with abi might be clinically harnessed to reverse resistance to CYP17A1 inhibition at the standard dose by dose-escalation, or simply by administration with food to increase drug exposure.


2012 ◽  
Vol 30 (5_suppl) ◽  
pp. 209-209
Author(s):  
Nima Sharifi ◽  
Rui Li ◽  
Kristen Evaul ◽  
Kamalesh Sharma ◽  
Richard J Auchus

209 Background: Treatment with abiraterone acetate (abi) increases the survival of men with castration-resistant prostate cancer (CRPC). Resistance to abi invariably occurs, probably due in part to up-regulation of steroidogenic enzymes and/or other mechanisms that sustain the synthesis of dihydrotestosterone (DHT), which raises the possibility of reversing resistance by concomitant inhibition of other required steroidogenic enzymes. The 1000 mg daily abi dose was selected for the phase III trials despite the absence of dose-limiting toxicities at higher doses. Based on the 3β-hydroxyl, Δ5-structure, we hypothesized that abi also inhibits 3β-hydroxysteroid dehydrogenase/isomerase (3βHSD), which is absolutely required for the intratumoral synthesis of DHT in CRPC, regardless of origins or routes of synthesis. Methods: We tested if abi inhibits recombinant 3βHSD2 activity in vitro or endogenous 3βHSD activity in LNCaP and LAPC4 cells, including conversion of [3H]-dehydroepiandrosterone (DHEA) to androstenedione (AD), androgen receptor (AR) nuclear translocation, expression of AR-responsive genes, and LAPC4 xenograft growth in orchiectomized mice supplemented with DHEA. Results: Abi has a mixed inhibition pattern of 3βHSD2 in vitro, blocks the conversion from DHEA to AD and DHT with an IC50 of < 1 µM in CRPC cell lines, inhibits AR nuclear translocation and expression of TMPRSS2, and decreases CRPC xenograft growth in DHEA-supplemented mice. Conclusions: Abi blocks 3βHSD enzymatic activity, synthesis of AD and DHT, inhibits the AR-response, and suppresses growth of CRPC cells at concentrations that are clinically achievable. Variable abi inhibition of 3βHSD might account in part for the heterogeneous clinical response to abi. More importantly, 3βHSD inhibition with abi might be clinically harnessed to reverse resistance to CYP17A1 inhibition at the standard dose by dose-escalation, or simply by administration with food to increase drug exposure.


2011 ◽  
Vol 339 (1-2) ◽  
pp. 45-53 ◽  
Author(s):  
Mirja Rotinen ◽  
Joaquín Villar ◽  
Jon Celay ◽  
Irantzu Serrano ◽  
Vicente Notario ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document