scholarly journals Arsenic trioxide synergizes with everolimus (Rad001) to induce cytotoxicity of ovarian cancer cells through increased autophagy and apoptosis

2012 ◽  
Vol 19 (5) ◽  
pp. 711-723 ◽  
Author(s):  
Nan Liu ◽  
Sheng Tai ◽  
Boxiao Ding ◽  
Ryan K Thor ◽  
Sunita Bhuta ◽  
...  

Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway plays a key role in the tumorigenesis of a variety of human cancers including ovarian cancer. However, inhibitors of this pathway such as Rad001 have not shown therapeutic efficacy as a single agent for this cancer. Arsenic trioxide (ATO) induces an autophagic pathway in ovarian carcinoma cells. We found that ATO can synergize with Rad001 to induce cytotoxicity of ovarian cancer cells. Moreover, we identified synergistic induction of autophagy and apoptosis as the likely underlying mechanism that is responsible for the enhanced cytotoxicity. The enhanced cytotoxicity is accompanied by decreased p-AKT levels as well as upregulation of ATG5–ATG12 conjugate and LC3-2, hallmarks of autophagy. Rad001 and ATO can also synergistically inhibit tumors in a xenograft animal model of ovarian cancer. These results thus identify and validate a novel mechanism to enhance and expand the existing targeted therapeutic agent to treat human ovarian cancer.

2020 ◽  
Vol 19 (2) ◽  
pp. 206-210
Author(s):  
Feng Chen ◽  
Bei Zhang

Lupeol exhibits multiple pharmacological activities including, anticancerous, anti-inflammatory, and antioxidant. The aim of this study was to explore the anticancerous activity of lupeol on ovarian cancer cells and examine its mechanism of action. To this end, increasing concentrations of lupeol on cell viability, cell cycle, and apoptosis in Caov-3 cells were evaluated. Lupeol inhibited cell viability, induced G1 phase arrest in cell cycle, increased cell apoptosis, and inhibited the ratio of phospho-Akt/protein kinase B and phospho-mammalian target of rapamycin/mammalian target of rapamycin. In conclusion, these data suggest that lupeol may play a therapeutic role in ovarian cancer.


2019 ◽  
Vol 58 (11) ◽  
pp. 1594-1602 ◽  
Author(s):  
Jung Mi Byun ◽  
Dae Sim Lee ◽  
Charles N. Landen ◽  
Da Hyun Kim ◽  
Young Nam Kim ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (7) ◽  
pp. 2281-2295 ◽  
Author(s):  
K. Brasseur ◽  
V. Leblanc ◽  
F. Fabi ◽  
S. Parent ◽  
C. Descôteaux ◽  
...  

Abstract As we previously showed, we have synthesized a new family of 17β-estradiol-platinum(II) hybrids. Earlier studies revealed the VP-128 hybrid to show high efficiency compared with cisplatin toward hormone-dependent breast cancer cells. In the present research, we have studied the antitumor activity of VP-128 in vitro and in vivo against ovarian cancer. In nude mice with ovarian xenografts, VP-128 displayed selective activity toward hormone-dependent tumors and showed higher efficiency than cisplatin to inhibit tumor growth. Similarly, in vitro, transient transfection of estrogen receptor (ER)-α in ERα-negative A2780 cells increased their sensitivity to VP-128-induced apoptosis, confirming the selectivity of VP-128 toward hormone-dependent tumor cells. In agreement, Western blot analysis revealed that VP-128 induced higher caspase-9, caspase-3, and poly (ADP-ribose) polymerase cleavage compared with cisplatin. The activation of caspase-independent apoptosis was also observed in ERα-negative A2780 cells, in which VP-128 rapidly induced the translocation of apoptosis-inducing factor to the nucleus. Conversely, subcellular localization of apoptosis-inducing factor was not modified in ERα-positive Ovcar-3 cells. We also discovered that VP-128 induces autophagy in ovarian cancer cells because of the formation of acidic vesicular organelles (AVOs) and increase of Light Chain 3B-II protein responsible for the formation of autophagosomes; pathways related to autophagy (AKT and mammalian target of rapamycin) were also down-regulated, supporting this mechanism. Finally, the inhibition of autophagy using chloroquine increased VP-128 efficiency, indicating a possible combination therapy. Altogether these results highlight the beneficial value of VP-128 for the treatment of hormone-dependent ovarian cancers and provide preliminary proof of concept for the efficient targeting of ERα- by 17β-estradiol-Pt(II)-linked chemotherapeutic hybrids in these tumors.


2013 ◽  
Vol 23 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Madita Reutter ◽  
Günter Emons ◽  
Carsten Gründker

ObjectiveIncreased glycolysis for energy production is necessary for survival of tumor cells and thus represents a selective therapeutic target. We have analyzed in vitro whether inhibition of glycolysis can reduce the viability of human endometrial and ovarian cancer cells and whether it can enhance the antitumor efficacy of GnRH receptor-targeted therapies.Materials and MethodsCell viability of ovarian and endometrial cancer cells treated without or with glycolysis inhibitor 2-Deoxy-D-Glucose (2DG) alone or in combination with GnRH-II antagonist [Ac-D2Nal1, D-4Cpa2, D-3Pal3,6,Leu8, D-Ala10]GnRH-II or with cytotoxic GnRH-I agonist AEZS-108 (AN-152) was measured using alamar blue assay. Induction of apoptosis was analyzed using TUNEL assay and quantified by measurement of loss of mitochondrial membrane potential. Apoptotic signaling was measured by quantification of activated caspase-3 by using the Western blot technique.ResultsTreatment of endometrial and ovarian cancer cells with glycolysis inhibitor 2DG resulted in a significant decrease of cell viability and a significant increase of apoptosis. Treatment with 2DG in combination with the GnRH-II antagonist or with AEZS-108 resulted in a significant reduced viability compared with single-agent treatments. The observed reduction in viability was due to induction of apoptosis. Also for apoptosis induction, a significant stronger effect in the case of cotreatments compared with single-agent treatments could be observed. These additive effects could be correlated to increased activation of caspase-3.ConclusionsThe glycolytic phenotype of human endometrial and ovarian cancer cells can be targeted for therapeutic intervention. In addition, cotreatment of a glycolysis inhibitor with GnRH receptor-targeted therapies might be a suitable therapy for GnRH receptor-positive human endometrial and ovarian cancers.


Sign in / Sign up

Export Citation Format

Share Document