scholarly journals Undernutrition and stage of gestation influence fetal adipose tissue gene expression

2015 ◽  
Vol 54 (3) ◽  
pp. 263-275 ◽  
Author(s):  
Jacqueline M Wallace ◽  
John S Milne ◽  
Raymond P Aitken ◽  
Dale A Redmer ◽  
Lawrence P Reynolds ◽  
...  

Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both of which are associated with inadequate prenatal adipose tissue development. In the present study, we investigated the impact of maternal undernutrition on the expression of genes that regulate fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145 days). Singleton fetuses were taken from adolescent ewes that were either fed control (C) intake to maintain adiposity throughout pregnancy or were undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal intake at day 89, but by day 130, fetuses from UN dams were 17% lighter and had lower PAT mass that contained fewer unilocular adipocytes. Relative PAT expression ofIGF1,IGF2,IGF2Rand peroxisome proliferator-activated receptor gamma (PPARG) mRNA was lower in UN than in controls, predominantly at day 89. Independent of maternal nutrition, PAT gene expression ofPPARG, glycerol-3-phosphate dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein 1 and prolactin receptor increased, whereasIGF1,IGF2,IGF1RandIGF2Rdecreased between days 89 and 130. Fatty acid synthase and lipoprotein lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greaterLPLand leptin mRNA than males, andLPL, leptin andPPARGmRNAs were decreased in UN at day 89 in females only. PAT gene expression correlations with PAT mass were stronger at day 89 than they were at day 130. These data suggest that the key genes that regulate adipose tissue development and function are active beginning in mid-gestation, at which point they are sensitive to maternal undernutrition: this leads to reduced fetal adiposity by late pregnancy.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tiziana Squillaro ◽  
Gianfranco Peluso ◽  
Umberto Galderisi ◽  
Giovanni Di Bernardo

Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.


2008 ◽  
Vol 295 (5) ◽  
pp. R1671-R1679 ◽  
Author(s):  
Mireille Raccurt ◽  
Fannie Baudimont ◽  
Julien Tirard ◽  
Benjamin Rey ◽  
Elodie Moureaux ◽  
...  

Rapid growth is of crucial importance for Adélie penguin chicks reared during the short Antarctic summer. It partly depends on the rapid ontogenesis of fat stores that are virtually null at hatching but then develop considerably (×40) within a month to constitute both an isolative layer against cold and an energy store to fuel thermogenic and growth processes. The present study was aimed at identifying by RT-PCR the major transcriptional events that chronologically underlie the morphological transformation of adipocyte precursors into mature adipocytes from hatching to 30 days of age. The peak expression of GATA binding protein 3, a marker of preadipocytes, at day 7 posthatch indicates a key proliferation step, possibly in relation to the expression of C/EBPα (C/EBPα). High plasma total 3,5,3′-triiodo-l-thyronine (T3) levels and high levels of growth hormone receptor transcripts at hatching suggested that growth hormone and T3 play early activating roles to favor proliferation of preadipocyte precursors. Differentiation and growth of preadipocytes may occur around day 15 in connection with increased abundance of transcripts encoding IGF-1, proliferator-activated receptor-γ, and C/EBPβ, gradually leading to functional maturation of metabolic features of adipocytes including lipid uptake and storage (lipoprotein lipase, fatty-acid synthase) and late endocrine functions (adiponectin) by day 30. Present results show a close correlation between adipose tissue development and chick biology and a difference in the scheduled expression of regulatory factors controlling adipogenesis compared with in vitro studies using cell lines emphasizing the importance of in vivo approaches.


2019 ◽  
Author(s):  
Jong Woo Park ◽  
Young In Han ◽  
Tae Min Kim ◽  
Su Cheong Yeom ◽  
Jaeku Kang ◽  
...  

ABSTRACTThe oxidation of guanine to 8-oxoguanine (8-oxoG) is the most common type of oxidative DNA lesion. There is a growing body of evidence indicating that 8-oxoG is not only pre-mutagenic, but also plays an essential role in modulating gene expression along with its cognate repair proteins. In this study, we investigated the relationship between 8-oxoG formed under intrinsic oxidative stress conditions and gene expression in adipose and lung tissues of juvenile mice. We observed that transcriptional activity and the number of active genes were significantly correlated with the distribution of 8-oxoG in gene promoter regions, as determined by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), and 8-oxoG and RNA sequencing. Gene regulation by 8-oxoG was not associated with the degree of 8-oxoG formation. Instead, genes with GC-rich transcription factor binding sites in their promoters became more active with increasing 8-oxoG abundance as also demonstrated by specificity protein 1 (Sp1)- and estrogen response element (ERE)-luciferase assays in human embryonic kidney (HEK293T) cells. These results indicate that the occurrence of 8-oxoG in GC-rich Sp1 binding sites is important for gene regulation during adipose tissue development.


2018 ◽  
Author(s):  
Younghoon Jang ◽  
Chaochen Wang ◽  
Aaron Broun ◽  
Young-Kwon Park ◽  
Lenan Zhuang ◽  
...  

AbstractHistone H3K4 mono-methyltransferases MLL3 and MLL4 (MLL3/4) are required for enhancer activation during cell differentiation, though the mechanism is incompletely understood. To address MLL3/4 enzymatic activity in enhancer regulation, we have generated two mouse lines: one expressing H3.3K4M, a lysine-4-to-methionine (K4M) mutation of histone H3.3 that inhibits H3K4 methylation, and the other carrying conditional double knockout of MLL3/4 enzymatic SET domains. Expression of H3.3K4M in lineage-specific precursor cells depletes H3K4 methylation and prevents adipogenesis and adipose tissue development. Mechanistically, H3.3K4M prevents enhancer activation in adipogenesis by destabilizing MLL3/4 proteins but not other Set1-like H3K4 methyltransferases. Notably, deletion of the enzymatic SET domain of MLL3/4 in lineage-specific precursor cells mimics H3.3K4M expression and prevents adipose tissue development. Interestingly, destabilization of MLL3/4 by H3.3K4M in adipocytes does not affect adipose tissue maintenance and function. Together, our findings indicate that H3.3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development.


Sign in / Sign up

Export Citation Format

Share Document