scholarly journals SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules

2016 ◽  
Vol 56 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Guoying Chang ◽  
Rui Yang ◽  
Yanan Cao ◽  
Aifang Nie ◽  
Xuefan Gu ◽  
...  

The Sidt2 global knockout mouse (Sidt2−/−) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2−/− mice were investigated. The β-cells from Sidt2−/− mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca2+]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca2+]i of β-cell from Sidt2−/− mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca2+]i the response pattern to glucose in Sidt2−/− cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca2+]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2−/− β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca2+]i response of Sidt2−/− β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2−/− and WT islets, suggesting that Sidt2−/− islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion.

2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5391-5400 ◽  
Author(s):  
Hirofumi Imoto ◽  
Nobuhiro Sasaki ◽  
Masanori Iwase ◽  
Udai Nakamura ◽  
Miwako Oku ◽  
...  

Pancreatic islets express the superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, but its role remains unknown. To address this, we studied the mechanisms of impaired insulin secretion induced by diphenyleneiodium (DPI), an NADPH oxidase inhibitor. We investigated the effects of DPI on glucose- and nonfuel-stimulated insulin secretion, islet glucose metabolism, and intracellular Ca2+ concentration ([Ca2+]i) dynamics in rat islets and β-cell line RINm5F cells. DPI did not affect insulin secretion at 3.3 mm glucose but totally suppressed insulin secretion stimulated by 16.7 mm glucose (percentage of control, 9.2 ± 1.2%; P <0.001). DPI also inhibited insulin release by high K+-induced membrane depolarization (percentage of control, 36.0 ± 5.3%; P <0.01) and protein kinase C activation (percentage of control, 30.2 ± 10.6% in the presence of extracellular Ca2+, P <0.01; percentage of control, 42.0 ± 4.7% in the absence of extracellular Ca2+, P <0.01). However, DPI had no effect on mastoparan-induced insulin secretion at 3.3 and 16.7 mm glucose under Ca2+-free conditions. DPI significantly suppressed islet glucose oxidation and ATP content through its known inhibitory action on complex I in the mitochondrial respiratory chain. On the other hand, DPI altered [Ca2+]i dynamics in response to high glucose and membrane depolarization, and DPI per se dose-dependently increased [Ca2+]i. The DPI-induced [Ca2+]i rise was associated with a transient increase in insulin secretion and was attenuated by removal of extracellular Ca2+, by L-type voltage-dependent Ca2+ channel blockers, by mitochondrial inhibitors, or by addition of 0.1 or 1.0 μm H2O2 exogenously. Our results showed that DPI impairment of insulin secretion involved altered Ca2+ signaling, suggesting that NADPH oxidase may modulate Ca2+ signaling in β-cells.


2018 ◽  
Vol 51 (5) ◽  
pp. 2185-2197 ◽  
Author(s):  
Lili Men ◽  
Juan Sun ◽  
Decheng Ren

Background/Aims: VCP-interacting membrane selenoprotein (VIMP), an ER resident selenoprotein, is highly expressed in β-cells, however, the role of VIMP in β-cells has not been characterized. In this study, we studied the relationship between VIMP deficiency and β-cell survival in MIN6 insulinoma cells. Methods: To determine the role of VIMP in β-cells, lentiviral VIMP shRNAs were used to knock down (KD) expression of VIMP in MIN6 cells. Cell death was quantified by propidium iodide (PI) staining followed by flow cytometric analyses using a FACS Caliber and FlowJo software. Cell apoptosis and proliferation were determined by TUNEL assay and Ki67 staining, respectively. Cell cycle was analyzed after PI staining. Results: The results show that 1) VIMP suppression induces β-cell apoptosis, which is associated with a decrease in Bcl-xL, and the β-cell apoptosis induced by VIMP suppression can be inhibited by overexpression of Bcl-xL; 2) VIMP knockdown (KD) decreases cell proliferation and G1 cell cycle arrest by accumulating p27 and decreasing E2F1; 3) VIMP KD suppresses unfolded protein response (UPR) activation by regulating the IRE1α and PERK pathways; 4) VIMP KD increases insulin secretion. Conclusion: These results suggest that VIMP may function as a novel regulator to modulate β-cell survival, proliferation, cell cycle, UPR and insulin secretion in MIN6 cells.


2004 ◽  
Vol 561 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Hui Zhang ◽  
Masahiro Nagasawa ◽  
Satoko Yamada ◽  
Hideo Mogami ◽  
Yuko Suzuki ◽  
...  

2000 ◽  
Vol 50 ◽  
pp. 183
Author(s):  
Cynthia Tan ◽  
Jian Tu ◽  
Bernard E Tuch ◽  
Shane A Brown
Keyword(s):  
Β Cells ◽  

2019 ◽  
Vol 27 ◽  
pp. S81-S91 ◽  
Author(s):  
Mica Ohara-Imaizumi ◽  
Kyota Aoyagi ◽  
Toshihisa Ohtsuka

Endocrinology ◽  
1973 ◽  
Vol 92 (5) ◽  
pp. 1469-1474 ◽  
Author(s):  
JEROME M. FELDMAN ◽  
HAROLD E. LEBOVITZ ◽  
JUNE BOWMAN

2008 ◽  
Vol 295 (6) ◽  
pp. E1287-E1297 ◽  
Author(s):  
Mette V. Jensen ◽  
Jamie W. Joseph ◽  
Sarah M. Ronnebaum ◽  
Shawn C. Burgess ◽  
A. Dean Sherry ◽  
...  

Glucose-stimulated insulin secretion (GSIS) is central to normal control of metabolic fuel homeostasis, and its impairment is a key element of β-cell failure in type 2 diabetes. Glucose exerts its effects on insulin secretion via its metabolism in β-cells to generate stimulus/secretion coupling factors, including a rise in the ATP/ADP ratio, which serves to suppress ATP-sensitive K+ (KATP) channels and activate voltage-gated Ca2+ channels, leading to stimulation of insulin granule exocytosis. Whereas this KATP channel-dependent mechanism of GSIS has been broadly accepted for more than 30 years, it has become increasingly apparent that it does not fully describe the effects of glucose on insulin secretion. More recent studies have demonstrated an important role for cyclic pathways of pyruvate metabolism in control of insulin secretion. Three cycles occur in islet β-cells: the pyruvate/malate, pyruvate/citrate, and pyruvate/isocitrate cycles. This review discusses recent work on the role of each of these pathways in control of insulin secretion and builds a case for the particular relevance of byproducts of the pyruvate/isocitrate cycle, NADPH and α-ketoglutarate, in control of GSIS.


2001 ◽  
Vol 360 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Christina M. BUCHANAN ◽  
Anthony R. J. PHILLIPS ◽  
Garth J. S. COOPER

Pancreatic islet β-cells secrete the hormones insulin, amylin and pancreastatin. To search for further β-cell hormones, we purified peptides from secretory granules isolated from cultured murine βTC6-F7 β-cells. We identified a 34-amino-acid peptide (3948Da), corresponding to Asp69–Leu102 of the proinsulin-like growth factor II E-peptide, which we have termed ‘preptin’. Preptin, is present in islet β-cells and undergoes glucose-mediated co-secretion with insulin. Synthetic preptin increases insulin secretion from glucose-stimulated βTC6-F7 cells in a concentration-dependent and saturable manner. Preptin infusion into the isolated, perfused rat pancreas increases the second phase of glucose-mediated insulin secretion by 30%, while anti-preptin immunoglobulin infusion decreases the first and second phases of insulin secretion by 29 and 26% respectively. These findings suggest that preptin is a physiological amplifier of glucose-mediated insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document