scholarly journals Chorionic somatomammotropin RNA interference alters fetal liver glucose utilization

2020 ◽  
Vol 247 (3) ◽  
pp. 251-262
Author(s):  
Asghar Ali ◽  
Callie M Swanepoel ◽  
Quinton A Winger ◽  
Paul J Rozance ◽  
Russell V Anthony

Chorionic somatomammotropin (CSH) is a placenta-specific hormone associated with fetal growth, and fetal and maternal metabolism in both humans and sheep. We hypothesized that CSH deficiency could impact sheep fetal liver glucose utilization. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients. CSH RNAi generated two distinct phenotypes at 135 days of gestational age (dGA); pregnancies with IUGR (RNAi-IUGR) or with normal fetal weight (RNAi-NW). Fetal body, fetal liver and placental weights were reduced (P < 0.05) only in RNAi-IUGR pregnancies compared to SC. Umbilical artery plasma insulin and insulin-like growth factor 1 (IGF1) concentrations were decreased, whereas insulin receptor beta (INSR) concentration in fetal liver was increased (P < 0.05) in both RNAi phenotypes. The mRNA concentrations of IGF1, IGF2, IGF binding protein 2 (IGFBP2) and IGFBP3 were decreased (P < 0.05) in fetal livers from both RNAi phenotypes. Fetal liver glycogen concentration and glycogen synthase 1 (GYS1) concentration were increased (P < 0.05), whereas fetal liver phosphorylated-GYS (inactive GYS) concentration was reduced (P < 0.05) in both RNAi phenotypes. Lactate dehydrogenase B (LDHB) concentration was increased (P < 0.05) and IGF2 concentration was decreased (P < 0.05) in RNAi-IUGR fetal livers only. Our findings suggest that fetal liver glucose utilization is impacted by CSH RNAi, independent of IUGR, and is likely tied to enhanced fetal liver insulin sensitivity in both RNAi phenotypes. Determining the physiological ramifications of both phenotypes, may help to differentiate direct effect of CSH deficiency or its indirect effect through IUGR.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 378-379
Author(s):  
Asghar Ali ◽  
Mary Howerton ◽  
Quinton A Winger ◽  
Paul J Rozance ◽  
Russell V Anthony

Abstract Chorionic somatomammotropin (CSH) is a placenta-specific hormone and secreted into both fetal and maternal circulation. Reduced maternal CSH is observed with intrauterine growth restriction (IUGR) in both humans and sheep, and it has long been held that CSH modulates maternal and fetal metabolism. We hypothesized that CSH deficiency, created by RNA interference (RNAi), could impact fetal liver glucose metabolism. To generate CSH-deficient pregnancies, day 9 hatched blastocysts were infected with lentiviral particles expressing CSH-specific shRNA (RNAi) or scramble control shRNA (SC) and transferred to synchronized recipients. CSH RNAi generated two distinct phenotypes at 135 dGA; CSH RNAi pregnancies with IUGR (RNAi-IUGR; n = 8) or without IUGR (RNAi; n = 8). Data from both RNAi phenotypes were compared separately with SC using Welch’s t-test. Liver and placental weights were reduced (P &lt; 0.05) in RNAi-IUGR pregnancies, but not in RNAi pregnancies, as compared to SC (n = 8). Umbilical artery plasma insulin and insulin-like growth factor 1 (IGF1) concentrations were decreased (P &lt; 0.05), whereas insulin receptor beta (IRβ) concentration, as determined by Western immunoblot analysis, in fetal liver was increased (P &lt; 0.05) in both RNAi phenotypes. Fetal liver glycogen quantity was also increased (P &lt; 0.05) in both RNAi phenotypes. Glycogen synthase-1 (GYS-1) concentration in fetal liver was increased (P &lt; 0.05) in both RNAi phenotypes, whereas there was no change in GYS-2 concentration. Phosphorylated-GYS (inactive GYS) was reduced (P &lt; 0.05) in fetal livers for both RNAi phenotypes. Lactate dehydrogenase beta (LDHβ) concentration was increased (P &lt; 0.05) and IGF2 concentration was decreased (P &lt; 0.05) in RNAi-IUGR fetal livers only. From these results we conclude that fetal liver glucose metabolism is impacted by CSH RNAi, independent of IUGR, and is likely tied to enhanced insulin sensitivity in both CSH RNAi phenotypes. Differences between the two phenotypes may help differentiate direct and indirect effects of CSH. Supported by NIH R01 HD093701.


2020 ◽  
Vol 319 (3) ◽  
pp. E614-E628
Author(s):  
Jenica H. Kakadia ◽  
Bhawani B. Jain ◽  
Kyle Biggar ◽  
Austen Sutherland ◽  
Karen Nygard ◽  
...  

In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (−13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (−64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α′/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, −52%, P = 0.05) and mTORC2 (p-AktSer473, −56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.


1986 ◽  
Vol 64 (5) ◽  
pp. 405-412 ◽  
Author(s):  
Bhagu R. Bhavnani ◽  
C. Allan Woolever ◽  
Chee Chung Pan

To understand the control mechanisms involved in the regulation of fetal glycogen, we have studied the effect of in utero fetal decapitations on glycogen metabolism in rabbit fetal heart, lung, and liver. In utero fetal decapitations were performed between days 18 and 21 of gestation. Two to four fetuses on one side of the horn were decapitated. Fetuses were delivered between days 23 and 26 or between days 28 and 30 of gestation. Fetal heart, lungs, and liver were analyzed for DNA, protein, glycogen, glycogen synthase (I and D forms), glycogen phosphorylase (a and b forms), phosphofructokinase, pyruvate kinase, and lactic dehydrogenase. In fetal heart and lung, no difference was observed in any of the above measurements in the intact and decapitated fetuses. In contrast, fetal liver does not appear to develop the glycogen system as indicated by the very low levels of glycogen (0.02 mg/mg DNA) in decapitated fetuses as compared with intact fetuses (0.4 mg/mg DNA). Similarly the levels of glycogen synthase and phosphorylase were two to three times lower in livers from decapitated fetuses as compared with the livers from intact fetuses. The three enzymes phosphofructokinase, pyruvate kinase, and lactic dehydrogenase were not affected by fetal decapitation in all three tissues. These results indicate that the fetal hypothalamic–pituitary–adrenal (thyroid) axis is not required at least after day 18 of gestation for the normal accumulation and subsequent utilization of glycogen in fetal heart and lungs, while it is an absolute requirement for the development of the fetal liver glycogen system. These results further suggest that maternal and (or) placental hormones may play an important role in the deposition and utilization of fetal lung and heart glycogen.


2014 ◽  
Author(s):  
Ayfer Altas ◽  
Fatih Kuzu ◽  
Gurkan Haytaoglu ◽  
Murat Can ◽  
Figen Barut ◽  
...  

PEDIATRICS ◽  
2001 ◽  
Vol 108 (2) ◽  
pp. 495-497 ◽  
Author(s):  
S. L. Rutledge ◽  
J. Atchison ◽  
N. U. Bosshard ◽  
B. Steinmann

Sign in / Sign up

Export Citation Format

Share Document