17β-estradiol and cathepsins control primordial follicle growth in mouse ovaries

Reproduction ◽  
2021 ◽  
Author(s):  
Kouji Komatsu ◽  
Wei Wei ◽  
Tomohiko Murase ◽  
Satoru Masubuchi

This study aimed to clarify the physiological mechanism regulating the growth of primordial follicles in mouse ovaries. In a previous study, we found that increasing the fetal bovine serum concentration in the culture medium promoted the growth of primordial follicles in cultured postnatal day 0 ovaries but not in cultured postnatal day 4 ovaries. Based on these results, we hypothesized that the regulatory system repressing the growth of primordial follicles is established in postnatal day 4 ovaries. To confirm this hypothesis, microarray analysis of postnatal day 0 and 4 ovaries was performed. The results revealed that the expression of mRNA of stefin A homologs increased in postnatal day 4 ovaries. Stefin A belonging to the type 1 cystatin superfamily is an inhibitor of cysteine cathepsins. Consistently, the inhibitor of cathepsins repressed the growth of primordial follicles in cultured postnatal day 0 ovaries. Furthermore, we found that 17β-estradiol promoted the expression of mRNA of stefin A homologs in cultured ovaries and repressed the growth of primordial follicles. Our results demonstrate that 17β-estradiol and cathepsins regulate the growth of primordial follicles in mouse ovaries.

1998 ◽  
Vol 10 (2) ◽  
pp. 135-139 ◽  
Author(s):  
Steven R. Bolin ◽  
Julia F. Ridpath

One thousand lots of pooled fetal bovine serum (FBS) were tested for contamination with bovine viral diarrhea virus (BVDV) and/or for contamination with neutralizing antibody against BVDV. Noncytopathic or cytopathic BVDV was isolated from 203 lots of FBS. Analysis of the viral isolates identified 115 type 1 and 65 type 2 BVDV isolates. An additional 23 virus isolates were mixtures of >2 BVDV isolates and were not classified to viral genotype. Further characterization of the type 1 viruses identified 51 subgenotype 1a and 64 subgenotype 1b BVDV isolates. Viral neutralizing antibody was detected in 113 lots of FBS. Differential viral neutralization indicated that type 1 BVDV induced the antibody detected in 48 lots of FBS and type 2 BVDV induced the antibody detected in 16 lots of FBS.


2021 ◽  
Vol 22 (12) ◽  
pp. 6570
Author(s):  
Yue Lv ◽  
Rui-Can Cao ◽  
Hong-Bin Liu ◽  
Xian-Wei Su ◽  
Gang Lu ◽  
...  

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


Reproduction ◽  
2009 ◽  
Vol 137 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Eileen A McLaughlin ◽  
Skye C McIver

Oocytes are sequestered in primordial follicles before birth and remain quiescent in the ovary, often for decades, until recruited into the growing pool throughout the reproductive years. Therefore, activation of follicle growth is a major biological checkpoint that controls female reproductive potential. However, we are only just beginning to elucidate the cellular mechanisms required for either maintenance of the quiescent primordial follicle pool or initiation of follicle growth. Understanding the intracellular signalling systems that control oocyte maintenance and activation has significant implications for improving female reproductive productivity and longevity in mammals, and has application in domestic animal husbandry, feral animal population control and infertility in women.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


2018 ◽  
Vol 38 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Francielle L. Monteiro ◽  
Juliana F. Cargnelutti ◽  
Patrícia Braunig ◽  
Aurea V. Folgueras-Flatschart ◽  
Nathália C. Santos ◽  
...  

ABSTRACT: The present study performed a genetic identification of pestiviruses contaminating batches of fetal bovine serum (FBS) produced in Brazil from 2006 to 2014. Seventy-three FBS lots were screened by a RT-PCR targeting the 5’untranslated region (UTR) of the pestivirus genome. Thirty-nine lots (53.4%) were positive for pestivirus RNA and one contained infectious virus. Nucleotide sequencing and phylogenetic analysis of the 5’UTR revealed 34 lots (46.6%) containing RNA of bovine viral diarrhea virus type 1 (BVDV-1), being 23 BVDV-1a (5’ UTR identity 90.8-98.7%), eight BVDV-1b (93.9-96.7%) and three BVDV-1d (96.2- 97.6%). Six lots (8.2%) contained BVDV-2 (90.3-100% UTR identity) being two BVDV-2a; three BVDV-2b and one undetermined. Four FBS batches (5.5%) were found contaminated with HoBi-like virus (98.3 to 100%). Five batches (6.8%) contained more than one pestivirus. The high frequency of contamination of FBS with pestivirus RNA reinforce the need for systematic and updated guidelines for monitoring this product to reduce the risk of contamination of biologicals and introduction of contaminating agents into free areas.


2020 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
Subhra Ghosh ◽  
Katherine F. Roby ◽  
Michael W. Wolfe ◽  
M. A. Karim Rumi

AbstractOver the entire reproductive lifespan in mammals, a fixed number of primordial follicles serve as the source of mature oocytes. Uncontrolled and excessive activation of primordial follicles can lead to depletion of the ovarian reserve. We observed that disruption of ESR2-signaling results in increased activation of primordial follicles in Esr2-null (Esr2-/-) rats. However, follicle assembly was unaffected, and the total number of follicles remained comparable between neonatal wildtype and Esr2-/- ovaries. While the activated follicle counts were increased in Esr2-/- ovary, the number of primordial follicles were markedly decreased. Excessive recruitment of primordial follicles led to premature ovarian senescence in Esr2-/- rats and was associated with reduced levels of serum AMH and estradiol. Disruption of ESR2-signaling through administration of a selective antagonist (PHTPP) increased the number of activated follicles in wildtype rats, whereas a selective agonist (DPN) decreased follicle activation. In contrast, primordial follicle activation was not increased in the absence of ESR1 indicating that the regulation of primordial follicle activation is ESR2-specific. Follicle activation was also increased in Esr2-mutants lacking the DNA-binding domain, suggesting a role for the canonical transcriptional activation function. Both primordial and activated follicles express ESR2 suggesting a direct regulatory role for ESR2 within these follicles. We also detected that loss of ESR2 augmented the activation of AKT, ERK and mTOR pathways. Our results indicate that the lack of ESR2 upregulated both granulosa and oocyte factors, which can facilitate AKT and mTOR activation in Esr2-/- ovaries leading to increased activation of primordial follicles.


2009 ◽  
Vol 202 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Noriko Tagawa ◽  
Ryosuke Yuda ◽  
Sayaka Kubota ◽  
Midori Wakabayashi ◽  
Yuko Yamaguchi ◽  
...  

17β-Estradiol (E2) serves as an anti-obesity steroid; however, the mechanism underlying this effect has not been fully clarified. The effect of E2 on adipocytes opposes that of glucocorticoids, which potentiate adipogenesis and anabolic lipid metabolism. The key to the intracellular activation of glucocorticoid in adipocytes is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the production of active glucocorticoids (cortisol in humans and corticosterone in rodents) from inactive 11-keto steroids (cortisone in humans and 11-dehydrocorticosterone in rodents). Using differentiated 3T3-L1 adipocytes, we showed that E2 inhibited 11β-HSD1 activity. Estrogen receptor (ER) antagonists, ICI-182 780 and tamoxifen, failed to reverse this inhibition. A significant inhibitory effect of E2 on 11β-HSD1 activity was observed within 5–10 min. Furthermore, acetylation or α-epimerization of 17-hydroxy group of E2 attenuated the inhibitory effect on 11β-HSD1. These results indicate that the inhibition of 11β-HSD1 by E2 depends on neither an ER-dependent route, transcriptional pathway nor non-specific fashion. Hexose-6-phosphate dehydrogenase, which provides the cofactor NADPH for full activation of 11β-HSD1, was unaffected by E2. A kinetic study revealed that E2 acted as a non-competitive inhibitor of 11β-HSD1. The inhibitory effect of E2 on 11β-HSD1 was reproduced in adipocytes isolated from rat mesenteric fat depots. This is the first demonstration that E2 inhibits 11β-HSD1, thereby providing a novel insight into the anti-obesity mechanism of estrogen.


Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 855-863 ◽  
Author(s):  
George B John ◽  
Lane J Shirley ◽  
Teresa D Gallardo ◽  
Diego H Castrillon

Primordial follicles are long-lived structures assembled early in life. The mechanisms that control the balance between the conservation and the activation of primordial follicles are critically important for fertility and dictate the onset of menopause. The forkhead transcription factor Foxo3 serves an essential role in these processes by suppressing the growth of primordial follicles, thereby preserving them until later in life. While other factors regulating primordial follicle growth have been described, most serve multiple functions at several stages of female germ cell or follicle development, and corresponding mouse mutants exhibit pleiotropic phenotypes with disruption of multiple stages of follicle assembly, development, or survival. To investigate the possibility that Foxo3 also functions in other aspects of ovarian development beyond its known role in primordial follicle activation (PFA), we performed detailed analyses of mouse ovaries including electron microscopy to study primordial follicle structure, assembly, and early growth. These analyses revealed that the timing of primordial follicle assembly, early oocyte survival, and the expression of early germ line markers were unaffected in early Foxo3 ovaries. Taken together, these studies demonstrate that the phenotype associated with Foxo3 deficiency is remarkably specific for PFA and further support the placement of Foxo3 in a unique phenotypic class among mammalian female sterile mutants. Lastly, we discuss the implications of the specificity of this mutant phenotype with regard to the hypothesis that oocyte regeneration may occur in adults and serves as a means to replenish oocytes lost via natural physiological processes.


Reproduction ◽  
2018 ◽  
Vol 156 (1) ◽  
pp. F59-F73 ◽  
Author(s):  
Anamaria C Herta ◽  
Francesca Lolicato ◽  
Johan E J Smitz

The currently available assisted reproduction techniques for fertility preservation (i.e.in vitromaturation (IVM) andin vitrofertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistepin vitrosystems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.


Sign in / Sign up

Export Citation Format

Share Document