scholarly journals Regulation of the strypsin-related proteinase ISP2 by progesterone in endometrial gland epithelium during implantation in mice

Reproduction ◽  
2001 ◽  
pp. 235-244 ◽  
Author(s):  
CM O'Sullivan ◽  
SY Liu ◽  
SL Rancourt ◽  
DE Rancourt

Hormones prepare the uterus for the arrival and subsequent invasion of the embryo during pregnancy. Extracellular matrix-degrading proteinases and their inhibitors are involved in this integration process. Recent genetic evidence indicates that there is redundancy within the implantation proteinase cascade, indicating that additional proteinases may be involved. Recently, we described a novel implantation serine proteinase (ISP1) gene that encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching in vitro and the initiation of invasion. The evidence presented in the present study indicates that a second proteinase secreted from the uterus also participates in lysis of the zona pellucida. A second implantation serine proteinase gene (ISP2) was isolated, which encodes a related secreted tryptase expressed specifically within uterine endometrial glands. In pseudopregnancy, ISP2 gene expression is dependent on progesterone priming and is inhibited by the antiprogestin RU486. On the basis of similarities between ISP2 gene expression and that of a progesterone-regulated luminal proteinase associated with lysis of the zona pellucida, it is possible that the strypsin-related protein, ISP2, may encode a zona lysin proteinase.

Reproduction ◽  
2001 ◽  
pp. 61-71 ◽  
Author(s):  
CM O'Sullivan ◽  
SL Rancourt ◽  
SY Liu ◽  
DE Rancourt

Before implantation the blastocyst is maintained within a proteinaceous coat, the zona pellucida, which prevents polyspermy and ectopic pregnancy. An extracellular trypsin-like activity, which is necessary for hatching from the zona pellucida in vitro, is localized to the abembryonic pole of the blastocyst. Upon hatching, the extracellular matrix-degrading proteinases urokinase plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9) are thought to promote blastocyst invasion. However, gene disruption experiments have demonstrated that uPA and MMP-9 are dispensable and, thus, that other key enzymes are involved in implantation. In this study, a novel implantation serine proteinase (ISP1) gene, which is distantly related to haematopoietic tryptases and represents a novel branch of the S1 proteinase family, was cloned. ISP1 is expressed throughout morulae and blastocysts during hatching and outgrowth. Abrogation of ISP1 mRNA accumulation using antisense oligodeoxynucleotides disrupts blastocyst hatching and outgrowth in vitro. The results of this study indicate that the ISP1 gene probably encodes the long sought after 'hatching enzyme' that is localized to the abembryonic pole during hatching in vitro. ISP1 is the earliest embryo-specific proteinase to be expressed in implantation and may play a critical role in connecting embryo hatching to the establishment of implantation competence at the abembryonic pole of the blastocyst.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Williams ◽  
Sanlin Robinson ◽  
Babak Alaei ◽  
Kimberly Homan ◽  
Maryam Clausen ◽  
...  

Abstract Background and Aims Questions abound regarding the translation of in vitro 2D cell culture systems to the human setting. This is especially true of the kidney in which there is a complex hierarchical structure and a multitude of cell types. While it is well accepted that extracellular matrix plays a large part in directing cellular physiology emerging research has highlighted the importance of shear stresses and flow rates too. To fully recapitulate the normal gene expression and function of a particular renal cell type how important is it to completely reconstitute their in vivo surroundings? Method To answer this question, we have cultured proximal tubular (PT) epithelial cells in a 3-dimensional channel embedded within an engineered extracellular matrix (ECM) under physiological flow that is colocalised with an adjacent channel lined with renal microvascular endothelial cells that mimic a peritubular capillary. Modifications to the system were made to allow up to 12 chips to be run in parallel in an easily handleable form. After a period of maturation under continuous flow, both cell types were harvested for RNAseq analyses. RNA expression data was compared with cells cultured under static 2-dimensional conditions on plastic or the engineered ECM. Additionally, the perfusion of glucose through this 3D vascularised PT model has been investigated in the presence and absence of known diabetes modulating agents. Results PCA of RNAseq data showed that a) static non-coated, b) static matrix-coated and c) flow matrix-coated conditions separated into 3 distinct groups, while cell co-culture had less impact. Analysis of transcriptomic signatures showed that many genes were modulated by the matrix with additional genes influenced under flow conditions. Several of these genes, classified as transporters, are of particular importance when using this model to assess drug uptake and safety implications. Co-culture regulated some interesting genes, but fewer than anticipated. Preliminary experiments are underway to monitor glucose uptake and transport between tubules under different conditions. Conclusion We have developed a medium throughput system in which matrix and flow modulate gene expression. This system can be used to study the physiology of molecular cross-talk between cells. Ongoing analysis will further consider relevance to human physiology.


Author(s):  
Daniel Veraguas-Davila ◽  
Maria Francisca Cordero ◽  
Soledad Saez ◽  
Darling Saez-Ruiz ◽  
Alejandro Gonzalez ◽  
...  

2012 ◽  
Vol 26 (9) ◽  
pp. 1385-1392 ◽  
Author(s):  
Lei Zhang ◽  
Xuan Zhang ◽  
Kui-Feng Li ◽  
Dong-Xiao Li ◽  
Yu-Mei Xiao ◽  
...  

Endocrinology ◽  
1994 ◽  
Vol 134 (5) ◽  
pp. 2230-2236 ◽  
Author(s):  
C J Pirola ◽  
H M Wang ◽  
M I Strgacich ◽  
A Kamyar ◽  
B Cercek ◽  
...  

1995 ◽  
Vol 268 (4) ◽  
pp. H1613-H1620
Author(s):  
C. J. de Groot ◽  
V. A. Chao ◽  
J. M. Roberts ◽  
R. N. Taylor

Human umbilical vein endothelial (HUVE) cells plated on plastic or gelatin-coated dishes grow as a “cobblestone” monolayer. By contrast, endothelial cells cultured on a complex matrix (e.g., Matrigel) form three-dimensional, capillary-like structures. In the current study, we verified the capillary phenotype of the latter structures and asked whether the morphological changes induced by extracellular matrix also affect human endothelial gene expression and function in vitro. Concentrations of cellular fibronectin, prostacyclin, and endothelin-1 were measured in the conditioned media by enzyme-linked immunosorbent and radioimmunoassays. Steady-state concentrations of HUVE mRNA were estimated by reverse transcription-polymerase chain reaction and quantified by Northern analyses to assess fibronectin and endothelin-1 gene expression. We found that the subjacent extracellular matrix affects the morphology, proliferation, and differentiation of HUVE cells in vitro. Cells cultured on gelatin were more mitotically active, expressed significantly less cellular fibronectin, made similar amounts of prostacyclin, and secreted significantly more endothelin-1 compared with the same cells grown on a Matrigel substrate.


2004 ◽  
Vol 384 (1) ◽  
pp. 149-157 ◽  
Author(s):  
Shizhong ZHENG ◽  
Anping CHEN

During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARγ (peroxisome proliferator-activated receptor γ) are dramatically diminished in parallel with HSC activation. Stimulation of PPARγ by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARγ and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARγ activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARγ activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-β (transforming growth factor-β) receptors and interrupted the TGF-β signalling pathway in activated HSC, which was mediated by PPARγ activation. Taken together, our results demonstrate that curcumin stimulated PPARγ activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics of curcumin, which has no adverse health effects, make it a potential candidate for prevention and treatment of hepatic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document