scholarly journals Alleviation of the two-cell block of ICR mouse embryos by polyaminocarboxylate metal chelators

Reproduction ◽  
2002 ◽  
pp. 65-71 ◽  
Author(s):  
T Matsukawa ◽  
S Ikeda ◽  
H Imai ◽  
M Yamada

The present study was undertaken to examine the effects of various transition metal ion chelators, both polyaminocarboxylates (including nitrilotriacetate (NTA), ethylenediaminediacetate (EDDA), ethyleneglycolbistetraacetate (EGTA), ethylenediaminetetraacetate (EDTA) and diethylenetriaminepentaacetate (DTPA)) and non-polyaminocarboxylates (dipicolinic acid and deferoxamine), on the development in vitro of one-cell ICR strain mouse embryos to the four-cell and blastocyst stages. The order of stability constants of polyaminocarboxylates for transition metal ions such as zinc, copper and iron is as follows: NTA < or = EDDA < EGTA < EDTA < DTPA. Addition of 10 or 100 micromol polyaminocarboxylates x l(-1) to the medium significantly enhanced the development of most one-cell embryos (66-88%) beyond the two-cell stage compared with that (< 25%) in medium without polyaminocarboxylates. Although EDDA, EDTA and DTPA at 10 micromol x l(-1) induced the development of most one-cell embryos to the four-cell stage and beyond, a higher concentration (100 micromol x l(-1)) of NTA and EGTA was required to obtain a similar result. Therefore, the ability of polyaminocarboxylates to overcome the two-cell block is not correlated with their potency to chelate transition metal ions. In contrast, the non-polyaminocarboxylates dipicolinic acid and deferoxamine, at 10 and 100 micromol x l(-1), did not have the same effect. Taken together, the results indicate that the ability of polyaminocarboxylates to overcome the two-cell block in embryo development is due to some common feature or features other than the ability to chelate transition metal ions.

Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


1988 ◽  
Vol 58 (4) ◽  
pp. 198-210 ◽  
Author(s):  
James W. Rucker ◽  
David M. Cates

Peracetic acid can be catalyzed to bleach cotton fibers at temperatures as low as 30°C by incorporating 2,2î-bipyridine in the bleach solution. Treatment of the fibers with HCl prior to bleaching reduces bleaching effectiveness by removing trace transition metal ions from the fibers. Sorption of individual ions (Cr+3 Mn+2, Fe+2, Fe+3 Co+2, Ni+2, Cu+2, and Zn+2) by HCl treated cotton fibers prior to bleaching indicates that the ferrous ion produces the greatest catalytic effect, and it is only effective when the metal ion is in the fiber as opposed to in solution. Ferrous ions in the fibers sorb 2,2î-bipyridine from solution to form the tris-2,2î-bipyridine ferrous ion complex that is associated with the fibers, and it is the trischelate associated with the fibers that catalyzes bleaching. The effects of pH, temperature, and concentrations of 2,2î-bipyridine, sodium lauryl sulfate, and transition metal ions (in the fibers and in solution) on bleaching effectiveness and peracetic acid decomposition have been studied, and a bleaching mechanism is proposed.


1982 ◽  
Vol 35 (7) ◽  
pp. 1335 ◽  
Author(s):  
M Chatterjee ◽  
D Ganguli

The exchange behaviour of some divalent transition metal ions M2+ (Zn2+, Cu2+, Ni2+, Co2+, Mn2+) in a zeolite NaX (SiO2/Al2O3 2.75) was studied at intermediate stages before equilibrium. The equivalent counter ion supply in the solution, given by the equivalent ratio of the two counter ions 2M2+/Na+, was found to be critical in determining the saturation level of exchange. The series of relative abilities of exchange was very similar to the well known selectivity series at equilibrium. It is suggested that water exchange of the metal ions in solution could be one of the factors controlling the relative ease of ion exchange.


2004 ◽  
Vol 847 ◽  
Author(s):  
Bridget Ingham ◽  
S. V. Chong ◽  
Jeff L. Tallon

ABSTRACTLayered organic-inorganic hybrid materials based on tungsten oxide as the inorganic framework have been synthesised to include transition metal ions. The resulting materials have been characterised using a number of techniques. X-ray diffraction shows an interlayer expansion with increasing alkyl length. Infrared vibrational spectra of manganese tungstate compounds indicate the organic amine molecules are neutrally charged, and the inorganic framework is unaltered as one varies the organic intercalate. The magnetic behaviour of the materials has also been explored using a SQUID magnetometer. In the manganese tungstate hybrids an antiferromagnetic (AF) transition is observed, which decreases in temperature as the inorganic interlayer spacing is increased. A nickel tungstate hybrid sample, on the other hand, displays a ferromagnetic transition, which we attribute to a canted AF phase below 15 K. In all cases studied, the behaviour can be mapped to an effective moment (Peff) per transition metal ion, which agrees well with theoretical and literature values for other transition metal oxides.


Zygote ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Masayuki Kobayashi ◽  
Yoshinori Terawaki ◽  
Koichi Saito ◽  
Kano Kasuga ◽  
Ikuo Kojima

SummaryThe phenomenon of developmental arrest at the 2-cell stage of zygotes obtained from certain mouse strains during in vitro culture is known as the 2-cell block. The effect of conditioned medium (CM) with rat hepatoma BRL cells on the 2-cell block of CD-1 mouse zygotes was investigated in comparison with that of CM with rat hepatoma Reuber H-35 cells. In control medium with EDTA, 75.4% of 2-cell embryos developed to the 4- to 8-cell stages. In the same conditions, the BRL Mr <10000 fraction inhibited the development of 2-cell embryos to the 4- to 8-cell stages (57.7%), although the inhibition by this fraction was weaker than by the Reuber Mr <10000 fraction (19.8%). As a result of reversed-phase column chromatography, a 2-cell stage specific inhibitor of the cleavage of mouse embryos (Fr.B-25), which separated into the Mr <10000 fraction of the Reuber CM, was detected at a low level in the BRL Mr <10000 fraction. On the other hand, the Mr >10000 fraction of BRL CM accelerated the development of the embryos (90.3%). This beneficial effect was also evident even in the absence of EDTA. RT-PCR analysis revealed that mRNAs encoding the β-A or β-B subunit of activins (Mr ~29000), which are well characterized cytokines that act as releasers of the 2-cell block, were expressed in BRL cells. These results indicate that BRL cells synthesize Fr.B-25 at low levels, and that activins contained in the BRL CM probably contributed to overcoming the 2-cell block of CD-1 zygotes cultured in vitro.


2021 ◽  
Author(s):  
Xuan Lin ◽  
Yanli Yang ◽  
Yanmin Song ◽  
Shuai Li ◽  
Xuan Zhang ◽  
...  

The structural instability of inactivated foot-and-mouth disease virus (FMDV) hinders the development of vaccine industry. Here we found that some transition metal ions like Cu2+ and Ni2+ could specifically bind to FMDV capsids at capacities about 7089 and 3448 metal ions per capsid, respectively. These values are about 33- and 16-folds of the binding capacity of non-transition metal ion Ca2+ (about 214 per capsid). Further thermodynamic studies indicated that all these three metal ions bound to the capsids in spontaneous enthalpy driving manners (ΔG<0, ΔH<0, ΔS<0), and the Cu2+ binding had the highest affinity. The binding of Cu2+ and Ni2+ could enhance both the thermostability and acid-resistant stability of capsids, while the binding of Ca2+ was helpful only to the thermostability of the capsids. Animal experiments showed that the immunization of FMDV bound with Cu2+ induced the highest specific antibody titers in mice. Coincidently, the FMDV bound with Cu2+ exhibited significantly enhanced affinities to integrin β6 and heparin sulfate, both of which are important cell surface receptors for FMDV attaching. Finally, the specific interaction between capsids and Cu2+ or Ni2+ was applied to direct purification of FMDV from crude cell culture feedstock by the immobilized metal affinity chromatography. Based on our new findings and structural analysis of the FMDV capsid, a “transition metal ion bridges” mechanism that describes linkage between adjacent histidine and other amino acids at the inter-pentameric interface of the capsids by transition metal ions coordination action was proposed to explain their stabilizing effect imposed on the capsid. IMPORTANCE How to stabilize the inactivated FMDV without affecting virus infectivity and immunogenicity is a big challenge in vaccine industry. The electrostatic repulsion induced by protonation of a large amount of histidine residues at the inter-pentameric interface of viral capsids is one of the major mechanisms causing the dissociation of capsids. In the present work, this structural disadvantage inspired us to stabilize the capsids through coordinating transition metal ions with the adjacent histidine residues in FMDV capsid, instead of removing or substituting them. This approach was proved effective to enhance not only the stability of FMDV, but also enhance the specific antibody responses; thus, providing a new guideline for designing an easy-to-use strategy suitable for large-scale production of FMDV vaccine antigen.


Sign in / Sign up

Export Citation Format

Share Document