scholarly journals Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs

Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 907-916 ◽  
Author(s):  
Mika Katayama ◽  
Peter Sutovsky ◽  
Boh S Yang ◽  
Tom Cantley ◽  
August Rieke ◽  
...  

The effects of sperm-immobilization methods on decondensation of sperm chromatin and retention of subacrosomal sperm perinuclear theca (SAR-PT) after intracytoplasmic sperm injection (ICSI) were examined in pigs. Sperm membrane damage caused by different immobilization methods by rubbing with a micropipette without piezo pulses (R), or with a low (L) or high (H) intensity of piezo pulses while rubbing, was assessed by the time required for staining of sperm heads with eosin Y solution. The average time for staining of sperm heads immobilized by the R, L or H treatments was 76, 41 or 26 s, respectively. The fertilization rate following ICSI was increased by sperm immobilization by piezo pulses compared with R, but increased intensity of pulses from L to H did not cause further improvements (29, 48 and 47%, respectively). An immunofluorescence study revealed that H immobilization promoted the dissociation of SAR-PT from sperm chromatin compared with L and R, and it increased the frequency of male pronuclear formation in which chromatin appeared uniformly decondensed. Within vitrofertilization (IVF), SAR-PT disassembled coordinately with sperm chromatin decondensation and it was not detectable around male pronuclei. This was different from most of the oocytes after ICSI in which remnants SAR-PT were detected adjacent to male pronuclei. We concluded that increased damage on the sperm plasma membrane at immobilization improved fertilization rates and decondensation of sperm chromatin after ICSI due to the accelerated dissociation of SAR-PT from the sperm nucleus. Also, the behavior of SAR-PT after ICSI was different from that observed in oocytes after IVF.

Zygote ◽  
2002 ◽  
Vol 10 (2) ◽  
pp. 95-104 ◽  
Author(s):  
Mike Katayama ◽  
Takashi Miyano ◽  
Masashi Miyake ◽  
Seishiro Kato

Boar spermatozoa were prepared for intracytoplasmic sperm injection (ICSI) by two different treatments to facilitate sperm chromatin decondensation and improve fertilisation rates after ICSI in pigs: spermatozoa were either frozen and thawed without cryoprotectants, or treated with progesterone. Morphological changes of the sperm heads after the treatments were examined and then the activation of oocytes and the transformation of the sperm nucleus following ICSI were assessed. After freezing and thawing, the plasma membrane and acrosomal contents over the apical region of sperm head were lost in all the spermatozoa. Following treatment with 1 mg/ml progesterone, the acrosome reaction was induced in 61% of spermatozoa. After injection of three types of spermatozoa, non-treated spermatozoa and progesterone-treated (i.e. acrosome-reacted) spermatozoa induced oocyte activation, but frozen-thawed spermatozoa induced oocyte activation at a significantly lower rate. Sixty-two per cent of sperm heads remained orcein-negative for 6 h, however, resulting in delayed sperm chromatin decondensation and low male pronuclear formation in the oocytes injected with a non-treated spermatazoon. Since the treatments of freezing and thawing and progesterone for spermatozoa accelerated the initial change in sperm chromatin and the latter treatment induced oocyte activation earlier, it is considered that the delay in oocyte activation and decondensation of sperm chromatin after injection of non-treated spermatozoa is caused by the existence of the sperm plasma membrane. These results show that progesterone treatment efficiently induces the acrosome reaction in boar spermatozoa without destroying their potency for oocyte activation, and the induction of the acrosome reaction results in the promotion of male pronuclear formation after ICSI.


2017 ◽  
Vol 29 (8) ◽  
pp. 1556 ◽  
Author(s):  
S. Morrow ◽  
J. Gosálvez ◽  
C. López-Fernández ◽  
F. Arroyo ◽  
W. V. Holt ◽  
...  

There is growing concern over the effect of sperm cryopreservation on DNA integrity and the subsequent development of offspring generated from this cryopreserved material. In the present study, membrane integrity and DNA stability of Xenopus laevis and Xenopus tropicalis spermatozoa were evaluated in response to cryopreservation with or without activation, a process that happens upon exposure to water to spermatozoa of some aquatic species. A dye exclusion assay revealed that sperm plasma membrane integrity in both species decreased after freezing, more so for X. laevis than X. tropicalis spermatozoa. The sperm chromatin dispersion (SCD) test showed that for both X. tropicalis and X. laevis, activated frozen spermatozoa produced the highest levels of DNA fragmentation compared with all fresh samples and frozen non-activated samples (P < 0.05). Understanding the nature of DNA and membrane damage that occurs in cryopreserved spermatozoa from Xenopus species represents the first step in exploiting these powerful model organisms to understand the developmental consequences of fertilising with cryopreservation-damaged spermatozoa.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.


1995 ◽  
Vol 7 (2) ◽  
pp. 211 ◽  
Author(s):  
GD Palermo ◽  
J Cohen ◽  
M Alikani ◽  
A Adler ◽  
Z Rosenwaks

The purpose of this paper is to elucidate the experimental steps that led to the development of intracytoplasmic sperm injection (ICSI) and its application in the human. ICSI has become the most successful micromanipulation procedure for treating male infertility. A total of 355 in vitro fertilization (IVF) cycles utilizing ICSI are described; 180 couples were previously treated in 509 IVF cycles but achieved no fertilization and 175 couples could not be treated by IVF because of extremely poor semen parameters. Of the 3063 metaphase II (M II) oocytes retrieved, 2970 were injected with a survival rate of 93.6%, yielding 1917 bipronuclear zygotes (64.5%). In 148 patients, a foetal heart was evidenced by ultrasound; 11 of these patients miscarried between 7 and 13 weeks of gestation. The ongoing pregnancy rate was 38.6% (137/355) per retrieval and 40.5% (137/338) per embryo replacement. At the time of writing, there were 22 deliveries and one therapeutic abortion for a trisomy 21 chromosomal abnormality. In addition, 66 singleton, 37 twin, 10 triplet and 1 quadruplet pregnancies were ongoing. The concentration of motile spermatozoa in the ejaculate only slightly influenced the fertilization rate (P < 0.001) and the pregnancy outcome (P < 0.01). A preliminary injection procedure utilizing intracytoplasmic injection of isolated sperm heads was performed in 35 M II human oocytes with resultant fertilization and cleavage rates of 74% and 73% respectively. Skills in ICSI were acquired by injecting hamster and unfertilized human oocytes with human sperm. ICSI can be used to successfully treat couples who have failed IVF or who have too few spermatozoa for conventional in vitro insemination.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 7 (4) ◽  
pp. 927 ◽  
Author(s):  
BT Storey

Sexual reproduction requires that the gamete carrying the male-derived haploid chromatin join with the gamete carrying the female-derived haploid chromatin during fertilization to produce the diploid zygote. To accomplish this feat, the sperm must not only meet the egg, it must recognize the egg and be recognized in turn by the egg, and in the end must enter and be engulfed by the egg. In this selective overview of gamete interactions that lead to fertilization, encounters of three kinds, followed by the finale of gamete fusion, are considered from the sperm's viewpoint, with particular emphasis on the mammalian species with the mouse as the principal model. The first encounter is with the zona pellucida of the egg, to whose surface the sperm must bind. Mouse sperm appear to have four binding sites for zona ligands. Three interact with sugar moieties of the oligosaccharide chains of the mouse zona glycoprotein ZP3; the fourth binds a peptide backbone arginine. Capacitation is not required for this encounter, but is obligate for the second encounter--induction of the acrosome reaction in the bound sperm. The acrosome reaction is an exocytotic process that makes available the enzymatic machinery needed for sperm penetration the zona which is the end point of a sequence of reactions directed by intracellular signalling systems. In mouse sperm, these systems are presumed to be activated by ligands on ZP3 binding to ligand-specific sperm receptors with consequent aggregation of receptors. No receptor has been identified with certainty, nor have candidates for putative ZP3 ligands been identified. Completion of the acrosome reaction allows the sperm to penetrate the zona and, bind to the egg plasma membrane, thereby completing the third encounter. In the mouse, a 94-kDa protein appears essential for this binding. In the guinea-pig, a sperm plasma membrane protein (formerly PH-30, now fertilin), is a strong candidate for the mediator of the fusion process by which the egg engulfs the sperm. Decondensation of the sperm chromatin reverses the remarkable packing of DNA organized by sperm protamines. Mitochondrial DNA is also engulfed by the egg; the question of whether this DNA makes a small finite, or null, contribution to cytosolic inheritance is still in debate. The puzzles attending these encounters are presented as reminders of the intricacy and fascination, as well as of the vital necessity, of gamete interaction.


2015 ◽  
Vol 27 (1) ◽  
pp. 249
Author(s):  
M. E. Arias ◽  
R. Sanchez ◽  
R. Felmer

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique that has been used with considerable success in humans; however, in the bovine species the efficiency of this technique is far from optimal. The objective of the present study was to evaluate the effect of 4 chemical activation treatments, 6-dimethylaminopurine (DMAP), cycloheximide (CHX), anisomycin (ANY), and ethanol (EtOH) on the pronuclear formation and embryo development of bovine embryos generated by ICSI. Cumulus-oocyte complexes were aspirated from abattoir ovaries, selected, and matured in 400-µL drops of standard TCM-199 maturation medium for 22 h at 38.5°C and 5% CO2. The ICSI was performed by a standard procedure. Injected oocytes were randomly distributed and activated by 5 µM ionomycin for 5 min (Io) followed by i) 5 µg mL–1 CHX for 5 h (Io/CHX), ii) 3 h window followed by a second Io treatment plus 1.9 mM DMAP for 4 h (2Io/DMAP), iii) 1 µg mL–1 ANY for 5 h (Io/ANY), and iv) 3 h window followed by 7% ethanol (Io/EtoH). Embryos were cultured in 50-µL drops of KSOM medium under mineral oil at 38.5°C and 5% CO2, 5% O2, and 90% N2. Cleavage was recorded at 72 h and blastocyst rate at 192 h. Pronuclear formation analysis was carried out at 18 hpa with Hoechst staining. An oocyte was considered fertilized when 2 polar bodies and 1 female and 1 male pronucleus (or a decondensed sperm head) could be observed. The data were transformed to arcsine, analysed by ANOVA, and means were compared using Tukey's test with Statgraphics Plus 2 Software. Results with a total of 431 injected oocytes (114, 104, 101, and 112 for DMAP, CHX, ANY, and EtOH, respectively) showed differences in cleavage (P < 0.01) in DMAP, CHX, and ANY treatments (86, 72, and 78%, respectively), relative to EtOH (12%). Similarly, the rate of blastocysts/injected oocyte at 192 h was higher with DMAP, CHX, and ANY (41, 20, and 32%, respectively), relative to EtOH (4%). Sham-injected oocytes showed cleavage and blastocyst rates of 67, 43, 68, and 12% and 32, 11, 19, and 5%, for DMAP, CHX, ANY, and EtOH, respectively. Despite the higher developmental rate observed with DMAP, pronuclear formation assessment revealed that fertilization rate was higher in CHX (87%) and ANY (75%) treatments relative to DMAP (35%). In conclusion, the results of the present study show that activation of bovine oocytes after ICSI is more efficient with DMAP and ANY, compared with CHX and EtOH.Provision of ovaries by our local slaughterhouse (Frigorifico Temuco, Chile) and funding support from FONDECYT 1120241 CONICYT, Chile, are gratefully acknowledged.


2016 ◽  
Vol 28 (2) ◽  
pp. 224
Author(s):  
L. Myles ◽  
C. Durfey ◽  
P. Ryan ◽  
S. Willard ◽  
J. Feugang

Migration and interactions of mammalian gametes occur in deep body tissues after mating, rendering difficult any in situ noninvasive evaluation of their performances with current methods. In our effort to develop an effective and real-time in vivo imaging approach, we have successfully labelled porcine gametes with self-illuminating bioluminescent and red-shifted quantum dot nanoparticles (QD) in our previous studies (Feugang et al. 2012 J. Nanobiotechnol. 10, 45; Feugang et al. 2015, J. Nanobiotechnol. 13, 38). The present effort aimed at investigating whether QD could be incorporated into spermatozoa through induced in vitro capacitation, which increases sperm plasma membrane fluidity. Fresh extended boar semen was placed on top of a Percoll gradient and centrifuged. Purified motile spermatozoa were collected and washed with pre-warmed PBS. Pelleted spermatozoa were resuspended in the modified Tris-buffered medium with BSA fraction-V (1 mg mL–1; modified Tween medium B with milk powder and BSA). Sperm aliquots (108) were supplemented or not (control) with QD only (QD+; 1 nM), QD+caffeine (2 mM), or QD+heparin (10 µg mL–1); with caffeine and heparin being used as routine capacitant agents in fertilization media. All aliquots were incubated at 38.5°C, under 5% CO2 for 0.5, 1, or 3 h. Spermatozoa were then analysed for motility characteristics and imaged for confirmation of QD-sperm interactions (bioluminescence emission) and localization (transmission electron microscope; TEM). Motility data of 5 replicates were analysed with ANOVA-2, and P < 0.05 was set as threshold of significance. Total sperm motility (TSM) significantly improved with the presence of either or both QDs and capacitant agents after 0.5 and 1 h incubations. With exception of the QD+heparin, all other groups had significantly decreased TSM after 3 h of incubation, when compared with TSM at 0.5 and 1 h. Higher proportions of progressive and rapid (≥45 µm s–1) spermatozoa were observed in the presence of both capacitant agents (P < 0.05), and only QD+heparin maintained greater proportions after 3 h. Sperm straight-line velocity significantly increased in the QD+caffeine at 0.5 h and in both QD+caffeine and QD+heparin thereafter. Sperm straightness data were increased by both caffeine and heparin during incubations. Strong bioluminescence signals were observed in spermatozoa incubated with QDs compared to the background signal seen in the control group. The TEM images revealed consistent surface membrane attachment of QDs in all QD+ groups, whereas transmembrane and intra-spermatic localizations were visible in both QD+caffeine and QD+heparin groups. We concluded that supplementations of medium containing QDs with caffeine or heparin allow the crossing of sperm plasma membrane by QD. No toxic effect of QD on sperm motility was observed, which confirmed our previous report using a similar ratio of QDs over spermatozoa. Exploration of efficient incorporation of QD into spermatozoa as a promising approach for noninvasive molecular imaging is still ongoing, as well as further sperm viability assessments. Supported by the NIH grant #5T35OD010432 and USDA-ARS Biophotonics Initiative grant #58–6402–3-0120.


1994 ◽  
Vol 6 (1) ◽  
pp. 85 ◽  
Author(s):  
Steirteghem A Van ◽  
J Liu ◽  
H Joris ◽  
Z Nagy ◽  
C Staessen ◽  
...  

The results of 600 consecutive treatment cycles of subzonal insemination (SUZI) and intracytoplasmic sperm injection (ICSI) are described in couples with failed fertilization after standard IVF or insufficient spermatozoa in the ejaculate for IVF. More oocytes were damaged by ICSI (16.3%) than by SUZI (8.5%) and the normal fertilization rate was substantially higher after ICSI (49.1% v. 16.6%). Subsequent development of two-pronuclear oocytes in vitro was 80% after SUZI and 73.9% after ICSI. Significantly more triple embryo replacements were carried out after ICSI than after SUZI. Embryo transfers were possible in 421 of the 600 cycles. There were 63 pregnancies after ICSI (215 transfers) and 23 after SUZI (156 transfers); 10 additional pregnancies were achieved after 50 transfers of a mixture of SUZI and ICSI embryos. The results of fetal karyotypes and follow-up of the children do not indicate an increase in congenital malformations.


Sign in / Sign up

Export Citation Format

Share Document