The environmental impact of pulsed electric field treatment and high pressure processing: the example of carrot juice

Author(s):  
J. Davis ◽  
G. Moates ◽  
K. Waldron
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Chao Cen ◽  
Xinhua Chen

Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.


LWT ◽  
2021 ◽  
pp. 112304
Author(s):  
Aleksandra Djukić-Vuković ◽  
Saša Haberl Meglič ◽  
Karel Flisar ◽  
Ljiljana Mojović ◽  
Damijan Miklavčič

Author(s):  
V. M. (Bala) Balasubramaniam

Consumers demand healthier fresh tasting foods without chemical preservatives. To address the need, food industry is exploring alternative preservation methods such as high pressure processing (HPP) and pulsed electric field processing. During HPP, the food material is subjected to elevated pressures (up to 900 MPa) with or without the addition of heat to achieve microbial inactivation with minimal damage to the food. One of the unique advantages of the technology is the ability to increase the temperature of the food samples instantaneously; this is attributed to the heat of compression, resulting from the rapid pressurization of the sample. Pulsed electric field (PEF) processing uses short bursts of electricity for microbial inactivation and causes minimal or no detrimental effect on food quality attributes. The process involves treating foods placed between electrodes by high voltage pulses in the order of 20–80 kV (usually for a couple of microseconds). PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf life. Pressure in combination with other antimicrobial agents, including CO2, has been investigated for juice processing. Both HPP and PEF are quite effective in inactivating harmful pathogens and vegetative bacteria at ambient temperatures. Both HPP and PEF do not present any unique issues for food processors concerning regulatory matters or labeling. The requirements are similar to traditional thermal pasteurization such as development of a Hazard Analysis Critical Control Point (HACCP) plan for juices and beverages. Examples of high pressure, pasteurized, value added products commercially available in the United States include smoothies, fruit juices, guacamole, ready meal components, oysters, ham, poultry products, and salsa. PEF technology is not yet widely utilized for commercial processing of food products in the United States. The presentation will provide a brief overview of HPP and PEF technology fundamentals, equipment choices for food processors, process economics, and commercialization status in the food industry, with emphasis on juice processing. Paper published with permission.


Author(s):  
I. A. Shorstkii ◽  
D. A. Khudyakov

Morphological capillary-porous structure analysis of the oilseed materials, using x-ray microtomography in the longitudinal and transverse section and FESEM analysis of the surface microstructure after electrical and microwave treatment presented in current paper. Experimental data were obtained on the basis of the Institute of Materials Research and Engineering (Singapore). Two types of treatment considered: non-thermal pulsed electric field treatment, creating an electroporation effect of the oilseeds structure and microwave treatment. The main characteristic of capillary-porous structure of oil-bearing materials is given. Local changes in the electron density of the oilseed object under study, during the passage of radiation, made it possible to determine clearly the air cavities in the structure of the sunflower nucleus. The influence of a pulsed electric field treatment on the integrity of the structure of oil-cell membranes has been obtained with the creation of a material that has a greater permeability for diffusion processes. Experimentally was determined that over 2500 electric pores were formed on an area of 1 sq.cm as a result of a pulsed electric field treatment. In the case of a pulsed electric field treatment, the oil body material model can be represented as a capillary model with capillary and electroporation radii, thus expanding the model of a bidispersed structure with the addition micro capillaries, formed by an electric field. The data obtained are of interest not only for the technology of processing oilseeds, but also for the analysis methods of new electrophysical treatments.


Sign in / Sign up

Export Citation Format

Share Document