Microbial fuel cells: transformation of wastes into clean energy

Author(s):  
K. Scott
2019 ◽  
Vol 48 (3) ◽  
pp. 26-35
Author(s):  
Daniel Gonzalo Arboleda Avilés ◽  
Oscar Fernando Núñez Barrionuevo ◽  
Omar Fernando Sánchez Olmedo ◽  
Billy Daniel Chinchin Piñan ◽  
Daniel Alexander Arboleda Briones ◽  
...  

Every year the demand for energy worldwide is increasing. There are some alternatives to reduce these problems, such as clean energy or renewable energy. A particular alternative is the microbial fuel cells. These cells are biochemical reactors that convert chemical energy into electricity. The present research evaluated the dairy serum to produce bioelectricity from micro fuel cells (MFC) that were constructed with low-cost materials and with isolated bacteria in anaerobic sediments, located in Ecuadorian national territory, producing maximum voltages of 0.830 V in the circuit and a maximum power density of 30mW / m2. This low voltage was worked with 50 mL MFCs and with an output voltage of 300 mV. Under these conditions, a FLYBACK lift circuit isolated by the transformer was designed. This new circuit could increase the voltage from 30 mV to enough voltage to light a 2.5 V LED. Therefore, the energy produced by the MFC can be directly used to light a LED and to charge capacitors. This study shows that these MFCs, together with the designed circuit, could be used potentially to generate clean energy.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1378 ◽  
Author(s):  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo ◽  
Mario Carmona Campos ◽  
Gliserio Barbosa Pool ◽  
Guillermo Becerra Nuñez ◽  
...  

The emergence of modern technologies, such as Wireless Sensor Networks (WSNs), the Internet-of-Things (IoT), and Machine-to-Machine (M2M) communications, involves the use of batteries, which pose a serious environmental risk, with billions of batteries disposed of every year. However, the combination of sensors and wireless communication devices is extremely power-hungry. Energy Harvesting (EH) is fundamental in enabling the use of low-power electronic devices that derive their energy from external sources, such as Microbial Fuel Cells (MFC), solar power, thermal and kinetic energy, among others. Plant Microbial Fuel Cell (PMFC) is a prominent clean energy source and a step towards the development of self-powered systems in indoor and outdoor environments. One of the main challenges with PMFCs is the dynamic power supply, dynamic charging rates and low-energy supply. In this paper, a PMFC-based energy harvester system is proposed for the implementation of autonomous self-powered sensor nodes with IoT and cloud-based service communication protocols. The PMFC design is specifically adapted with the proposed EH circuit for the implementation of IoT-WSN based applications. The PMFC-EH system has a maximum power point at 0.71 V, a current density of 5 mA cm − 2 , and a power density of 3.5 mW cm − 2 with a single plant. Considering a sensor node with a current consumption of 0.35 mA, the PMFC-EH green energy system allows a power autonomy for real-time data processing of IoT-based low-power WSN systems.


2021 ◽  
Vol 77 (3) ◽  
pp. 15-22
Author(s):  
Segundo Rojas Flores ◽  
Renny Nazario-Naveda ◽  
Santiago M. Betines ◽  
M. De La Cruz–Noriega ◽  
L. Cabanillas-Chirinos ◽  
...  

Microbial fuel cells are presented as the promise of technology to generate electricity by using organic waste. In this research, molasses waste from Laredo Agroindustrial Company was used as fuel, as well as graphite and zinc electrodes, managing to build low-cost cells. It was possible to generate voltage and current peaks of 0.389 ± 0.021 V and 1.179 ± 0.079 mA, respectively. The cells showed that acid pH levels and conductivity values were around 100 mS/cm during the period of the highest bioelectricity generation. The maximum power density was 3.76 ± 0.62 W/cm2 for a current density of 247.55 mA/cm2, showing a peak voltage of 0.459 ± 0.52 V. The yeasts showed a logarithmic phase up to day 25 reflecting an increase in cell growth. Microbial fuel cells are projected to be the most viable solution for organic waste and clean energy generation problems.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4275-4320
Author(s):  
Chhotu Ram ◽  
Amit Kumar ◽  
Pushpa Rani

Global municipal solid waste (MSW) generation will increase to 2.2 billion tons per year by 2025 as per the World Bank projection. Improper waste management often leads to environmental degradation (i.e. water, air and soil pollution), transmission of diseases, and the release of greenhouse gases emissions, which contributes to climate change. To combat these problems, several countries are following the waste to energy (WtE) approach, which significantly reduces the volume of waste and generates renewable energy. Thus, the present study focuses on the municipal solid waste generation, composition, and waste to energy conversion technologies. Thermal conversion processes including incineration, pyrolysis, and gasification for heat, bio-oil, and syngas generation are already well established and are being employed in several countries. Currently, researchers are trying to improve the efficiency of biochemical methods such as anaerobic digestion, microbial fermentation, and microbial fuel cells for biogas, biohydrogen, and bioelectricity generation from MSW. This review explains the recent focus on microbial fermentation and microbial fuel cells for biofuels and bioelectricity production. Development of these technologies can lead to suitable eco-friendly approaches for the future. WtE technologies are important components of circular economy that will assist to achieve the demand of clean energy in future.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


Sign in / Sign up

Export Citation Format

Share Document