scholarly journals Genome-Wide Association Mapping of Stem Rust Resistance inHordeum vulgaresubsp.spontaneum

2017 ◽  
Vol 7 (10) ◽  
pp. 3491-3507 ◽  
Author(s):  
Ahmad H. Sallam ◽  
Priyanka Tyagi ◽  
Gina Brown-Guedira ◽  
Gary J. Muehlbauer ◽  
Alex Hulse ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Shitaye H. Megerssa ◽  
Karim Ammar ◽  
Maricelis Acevedo ◽  
Gina Brown-Guedira ◽  
Brian Ward ◽  
...  

Stem rust of wheat caused by Puccinia graminis Pers. f.sp. trtici Eriks and E. Henn., is the most damaging fungal disease of both common (Triticum aestivum L.) and durum (Triticum turgidum L., ssp. Durum) wheat. Continuously emerging races virulent to many of the commercially deployed qualitative resistance genes have caused remarkable loss worldwide and threaten global wheat production. The objectives of this study were to evaluate the response of a panel of 283 durum wheat lines assembled by the International Maize and Wheat Improvement Center (CIMMYT) to multiple races of stem rust in East Africa at the adult plant stage and map loci associated with field resistance. The lines were evaluated in Debre Zeit, Ethiopia and Njoro, Kenya from 2018 to 2019 in five environments (year × season). The panel was genotyped using genotyping-by-sequencing. After filtering, 26,439 Single Nucleotide Polymorphism (SNP) markers and 280 lines and three checks were retained for analysis. Population structure was assessed using principal component analysis. Genome-wide association analysis (GWAS) was conducted using Genomic Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability of the phenotype data revealed that 64–83% of the variation in stem rust response explained by the genotypes and lines with multiple race resistance were identified. GWAS analysis detected a total of 160 significant marker trait associations representing 42 quantitative trait loci. Of those, 21 were potentially novel and 21 were mapped to the same regions as previously reported loci. Known stem rust resistance genes/alleles were postulated including Sr8a, Sr8155B1, SrWeb/Sr9h, Sr11, Sr12, Sr13/Sr13 alleles, Sr17, Sr28/Sr16, Sr22, and Sr49. Lines resistant to multiple races in East Africa can be utilized as parents in durum wheat breeding programs. Further studies are needed to determine if there are new alleles at the Sr13 locus and potential markers for the known Sr13 alleles.


2011 ◽  
Vol 123 (8) ◽  
pp. 1257-1268 ◽  
Author(s):  
Long-Xi Yu ◽  
Aaron Lorenz ◽  
Jessica Rutkoski ◽  
Ravi P. Singh ◽  
Sridhar Bhavani ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Philomin Juliana ◽  
Jessica E. Rutkoski ◽  
Jesse A. Poland ◽  
Ravi P. Singh ◽  
Sivasamy Murugasamy ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Meriem Aoun ◽  
Matthew N. Rouse ◽  
James A. Kolmer ◽  
Ajay Kumar ◽  
Elias M. Elias

Leaf rust, caused by Puccinia triticina (Pt), stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are major diseases to wheat production globally. Host resistance is the most suitable approach to manage these fungal pathogens. We investigated the phenotypic and genotypic structure of resistance to leaf rust, stem rust, and stripe rust pathogen races at the seedling stage in a collection of advanced durum wheat breeding lines and cultivars adapted to Upper Mid-West region of the United States. Phenotypic evaluation showed that the majority of the durum wheat genotypes were susceptible to Pt isolates adapted to durum wheat, whereas all the genotypes were resistant to common wheat type-Pt isolate. The majority of genotypes were resistant to stripe rust and stem rust pathogen races. The durum panel genotyped using Illumina iSelect 90 K wheat SNP assay was used for genome-wide association mapping (GWAS). The GWAS revealed 64 marker-trait associations (MTAs) representing six leaf rust resistance loci located on chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. Two of these loci were identified at the positions of Lr52 and Lr64 genes, whereas the remaining loci are most likely novel. A total of 46 MTAs corresponding to four loci located on chromosome arms 1BS, 5BL, and 7BL were associated with stripe rust response. None of these loci correspond to designated stripe rust resistance genes. For stem rust, a total of 260 MTAs, representing 22 loci were identified on chromosome arms 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Four of these loci were located at the positions of known genes/alleles (Sr7b, Sr8155B1, Sr13a, and Sr13b). The discovery of known and novel rust resistance genes and their linked SNPs will help diversify rust resistance in durum wheat.


Sign in / Sign up

Export Citation Format

Share Document