scholarly journals Electrophysiological Alterations of Pyramidal Cells and Interneurons of the CA1 Region of the Hippocampus in a Novel Mouse Model of Dravet Syndrome

Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1055-1066
Author(s):  
David A. Dyment ◽  
Sarah C. Schock ◽  
Kristen Deloughery ◽  
Minh Hieu Tran ◽  
Kerstin Ure ◽  
...  

Dravet syndrome is a developmental epileptic encephalopathy caused by pathogenic variation in SCN1A. To characterize the pathogenic substitution (p.H939R) of a local individual with Dravet syndrome, fibroblast cells from the individual were reprogrammed to pluripotent stem cells and differentiated into neurons. Sodium currents of these neurons were compared with healthy control induced neurons. A novel Scn1aH939R/+ mouse model was generated with the p.H939R substitution. Immunohistochemistry and electrophysiological experiments were performed on hippocampal slices of Scn1aH939R/+ mice. We found that the sodium currents recorded in the proband-induced neurons were significantly smaller and slower compared to wild type (WT). The resting membrane potential and spike amplitude were significantly depolarized in the proband-induced neurons. Similar differences in resting membrane potential and spike amplitude were observed in the interneurons of the hippocampus of Scn1aH939R/+ mice. The Scn1aH939R/+ mice showed the characteristic features of a Dravet-like phenotype: increased mortality and both spontaneous and heat-induced seizures. Immunohistochemistry showed a reduction in amount of parvalbumin and vesicular acetylcholine transporter in the hippocampus of Scn1aH939R/+ compared to WT mice. Overall, these results underline hyper-excitability of the hippocampal CA1 circuit of this novel mouse model of Dravet syndrome which, under certain conditions, such as temperature, can trigger seizure activity. This hyper-excitability is due to the altered electrophysiological properties of pyramidal neurons and interneurons which are caused by the dysfunction of the sodium channel bearing the p.H939R substitution. This novel Dravet syndrome model also highlights the reduction in acetylcholine and the contribution of pyramidal cells, in addition to interneurons, to network hyper-excitability.

1988 ◽  
Vol 59 (5) ◽  
pp. 1352-1376 ◽  
Author(s):  
G. F. Tseng ◽  
L. B. Haberly

1. Intracellular recordings were obtained from anatomically verified layer II pyramidal cells in slices from rat piriform cortex cut perpendicular to the surface. 2. Responses to afferent and association fiber stimulation at resting membrane potential consisted of a depolarizing potential followed by a late hyperpolarizing potential (LHP). Membrane polarization by current injection revealed two components in the depolarizing potential: an initial excitatory postsynaptic potential (EPSP) followed at brief latency by an inhibitory postsynaptic potential (IPSP) that inverted with membrane depolarization and truncated the duration of the EPSP. 3. The early IPSP displayed the following characteristics suggesting mediation by gamma-aminobutyric acid (GABA) receptors linked to Cl- channels: associated conductance increase, sensitivity to increases in internal Cl- concentration, blockage by picrotoxin and bicuculline, and potentiation by pentobarbital sodium. The reversal potential was in the depolarizing direction with respect to resting membrane potential so that the inhibitory effect was exclusively via current shunting. 4. The LHP had an associated conductance increase and a reversal potential of -90 mV in normal bathing medium that shifted according to Nernst predictions for a K+ potential with changes in external K+ over the range 4.5-8 mM indicating mediation by the opening of K+ channels and ruling out an electrogenic pump origin. 5. Lack of effect of bath-applied 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) or internally applied ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) on the LHP and failure of high amplitude, direct membrane depolarization to evoke a comparable potential, argue against endogenous mediation of the LHP by a Ca2+ activated K+ conductance [gK(Ca)]. However, an apparent endogenously mediated gK(Ca) with a duration much greater than the LHP was observed in a low percent of layer II pyramidal cells. Lack of effect of 8-Br-cAMP also indicates a lack of dependence of the LHP on cAMP. 6. Other characteristics of the LHP that were demonstrated include: a lack of blockage by GABAA receptor antagonists, a probable voltage sensitivity (decrease in amplitude in the depolarizing direction), and an apparent brief onset latency (less than 10 ms) when the early IPSP was blocked by picrotoxin. The LHP was unaffected by pentobarbital sodium when the early IPSP was blocked by picrotoxin. 7. Both the LHP and early IPSP were blocked by low Ca2+/high Mg2+, consistent with disynaptic mediation.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (6) ◽  
pp. 4185-4189 ◽  
Author(s):  
J. C. Hirsch ◽  
O. Quesada ◽  
M. Esclapez ◽  
H. Gozlan ◽  
Y. Ben-Ari ◽  
...  

1. Graded N-methyl-D-aspartate receptor (NMDAR)-dependent epileptiform discharges were recorded from ex vivo hippocampal slices obtained from rats injected a week earlier with an intracerebroventricular dose of kainic acid. Intracellular recordings from pyramidal cells of the CA1 area showed that glutamate NMDAR actively participated in synaptic transmission, even at resting membrane potential. When NMDAR were pharmacologically isolated, graded burst discharges could still be evoked. 2. The oxidizing reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, 200 microM, 15 min) suppressed the late part of the epileptiform burst that did not recover after wash but could be reinstated by the reducing agent tris (2-carboxyethyl) phosphine (TCEP, 200 microM, 15 min) and again abolished with the NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-APV). 3. Pharmacologically isolated NMDAR-mediated responses were decreased by DTNB (56 +/- 10%, mean +/- SD, n = 6), an effect reversed by TCEP. 4. When only the fast glutamateric synaptic component was blocked, NMDA-dependent excitatory postsynaptic potentials (EPSPs) could be evoked despite the presence of underlying fast and slow inhibitory postsynaptic potentials (IPSPs). DTNB decreased EPSPs to 48 +/- 12% (n = 5) of control. 5. Since a decrease of the NMDAR-mediated response by +/- 50% is sufficient to suppress the late part of the burst, we suggest that epileptiform activity can be controlled by manipulation of the redox sites of NMDAR. Our observations raise the possibility of developing new anticonvulsant drugs that would spare alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-R (AMPAR)-mediated synaptic responses and decrease NMDAR-mediated synaptic transmission without blocking it completely.


2003 ◽  
Vol 90 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Roman Tyzio ◽  
Anton Ivanov ◽  
Cristophe Bernard ◽  
Gregory L. Holmes ◽  
Yehezkiel Ben-Ari ◽  
...  

A depolarized resting membrane potential has long been considered to be a universal feature of immature neurons. Despite the physiological importance, the underlying mechanisms of this developmental phenomenon are poorly understood. Using perforated-patch, whole cell, and cell-attached recordings, we measured the membrane potential in CA3 pyramidal cells in hippocampal slices from postnatal rats. With gramicidin perforated-patch recordings, membrane potential was –44 ± 4 (SE) mV at postnatal days P0–P2, and it progressively shifted to –67 ± 2 mV at P13–15. A similar developmental change of the membrane potential has been also observed with conventional whole cell recordings. However, the value of the membrane potential deduced from the reversal potential of N-methyl-d-aspartate channels in cell-attached recordings did not change with age and was –77 ± 2 mV at P2 and –77 ± 2 mV at P13–14. The membrane potential measured using whole cell recordings correlated with seal and input resistance, being most depolarized in neurons with high, several gigaohms, input resistance and low seal resistance. Simulations revealed that depolarized values of the membrane potential in whole cell and perforated-patch recordings could be explained by a shunt through the seal contact between the pipette and membrane. Thus the membrane potential of CA3 pyramidal cells appears to be strongly negative at birth and does not change during postnatal development.


1989 ◽  
Vol 67 (4) ◽  
pp. 359-362 ◽  
Author(s):  
J. N. Reynolds ◽  
P. L. Carlen

The effects of midazolam (3 nM) perfusion on the membrane and synaptic properties of dentate gyrus granule neurons were examined in hippocampal slices obtained from young adult (4–6 months) and old (24–26 months) Fischer 344 rats. In young neurons, midazolam perfusion resulted in a hyperpolarization of the resting membrane potential with no apparent change in the input resistance. Midazolam perfusion also produced a significant increase in the amplitude of the post-spike train afterhyperpolarization (AHP). In neurons obtained from old animals, midazolam perfusion also produced a hyperpolarization of the resting membrane potential but did not signficantly change the AHP. These effects may result from altered calcium homeostasis in neurons of the aged brain, and suggest that at least some of the direct actions of benzodiazepines on mammalian central neurons are altered during aging.Key words: aging, midazolam, hippocampus, dentate granule neuron, post-spike train afterhyperpolarization.


2000 ◽  
Vol 83 (4) ◽  
pp. 2040-2046 ◽  
Author(s):  
Patrice Congar ◽  
Jean-Luc Gaïarsa ◽  
Théodora Popovici ◽  
Yezekiel Ben-Ari ◽  
Valérie Crépel

The effects of ischemia were examined on CA3 pyramidal neurons recorded in hippocampal slices 2–4 mo after a global forebrain insult. With intracellular recordings, CA3 post-ischemic neurons had a more depolarized resting membrane potential but no change of the input resistance, spike threshold and amplitude, fast and slow afterhyperpolarization (AHP) or ADP, and firing properties in response to depolarizing pulses. With both field and whole-cell recordings, synaptic responses were similar in control and post-ischemic neurons. Although there were no spontaneous network-driven discharges, the post-ischemic synaptic network had a smaller threshold to generate evoked and spontaneous synchronized burst discharges. Thus lower concentrations of convulsive agents (kainate, high K+) triggered all-or-none network-driven synaptic events in post-ischemic neurons more readily than in control ones. Also, paired-pulse protocol generates, in post-ischemics but not controls, synchronized field burst discharges when interpulse intervals ranged from 60 to 100 ms. In conclusion, 2–4 mo after the insult, the post-ischemic CA3 pyramidal cells are permanently depolarized and have a reduced threshold to generate synchronized bursts. This may explain some neuropathological and behavioral consequences of ischemia as epileptic syndromes observed several months to several years after the ischemic insult.


2017 ◽  
Vol 117 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Edyta K. Bichler ◽  
Courtney C. Elder ◽  
Paul S. García

Antibiotics are used in the treatment and prevention of bacterial infections, but effects on neuron excitability have been documented. A recent study demonstrated that clarithromycin alleviates daytime sleepiness in hypersomnia patients (Trotti LM, Saini P, Freeman AA, Bliwise DL, García PS, Jenkins A, Rye DB. J Psychopharmacol 28: 697–702, 2014). To explore the potential application of clarithromycin as a stimulant, we performed whole cell patch-clamp recordings in rat pyramidal cells from the CA3 region of hippocampus. In the presence of the antibiotic, rheobase current was reduced by 50%, F-I relationship (number of action potentials as a function of injected current) was shifted to the left, and the resting membrane potential was more depolarized. Clarithromycin-induced hyperexcitability was dose dependent; doses of 30 and 300 μM clarithromycin significantly increased the firing frequency and membrane potential compared with controls ( P = 0.003, P < 0.0001). We hypothesized that clarithromycin enhanced excitability by reducing GABAA receptor activation. Clarithromycin at 30 μM significantly reduced ( P = 0.001) the amplitude of spontaneous miniature inhibitory GABAergic currents and at 300 μM had a minor effect on action potential width. Additionally, we tested the effect of clarithromycin in an ex vivo seizure model by evaluating its effect on spontaneous local field potentials. Bath application of 300 μM clarithromycin enhanced burst frequency twofold compared with controls ( P = 0.0006). Taken together, these results suggest that blocking GABAergic signaling with clarithromycin increases cellular excitability and potentially serves as a stimulant, facilitating emergence from anesthesia or normalizing vigilance in hypersomnia and narcolepsy. However, the administration of clarithromycin should be carefully considered in patients with seizure disorders. NEW & NOTEWORTHY Clinical administration of the macrolide antibiotic clarithromycin has been associated with side effects such as mania, agitation, and delirium. Here, we investigated the adverse effects of this antibiotic on CA3 pyramidal cell excitability. Clarithromycin induces hyperexcitability in single neurons and is related to a reduction in GABAergic signaling. Our results support a potentially new application of clarithromycin as a stimulant to facilitate emergence from anesthesia or to normalize vigilance.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicholas Valassina ◽  
Simone Brusco ◽  
Alessia Salamone ◽  
Linda Serra ◽  
Mirko Luoni ◽  
...  

AbstractDravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


2021 ◽  
Author(s):  
Kouya Uchino ◽  
Wakana Ikezawa ◽  
Yasuyoshi Tanaka ◽  
Masanobu Deshimaru ◽  
Kaori Kubota ◽  
...  

Dravet syndrome (DS) is an infantile-onset epileptic encephalopathy. More than 80% of DS patients have a heterozygous mutation in SCN1A, which encodes a subunit of the voltage-gated sodium channel, Nav1.1, in neurons. The roles played by astrocytes, the most abundant glial cell type in the brain, have been investigated in the pathogenesis of epilepsy; however, the specific involvement of astrocytes in DS has not been clarified. In this study, we evaluated Ca2+ signaling in astrocytes using genetically modified mice that have a loss-of-function mutation in Scn1a. We found that the slope of spontaneous Ca2+ spiking was increased without a change in amplitude in Scn1a+/− astrocytes. In addition, ATP-induced transient Ca2+ influx and the slope of Ca2+ spiking were also increased in Scn1a+/− astrocytes. These data indicate that perturbed Ca2+ dynamics in astrocytes may be involved in the pathogenesis of DS.


Sign in / Sign up

Export Citation Format

Share Document