EROSION PROCESSES AT THE NATURAL MONUMENT “UPPER AND LOWER SUDKI” IN THE BRYANSK

2015 ◽  
pp. 62
Author(s):  
S. N. Kovalev ◽  
M. V. Veretennikova ◽  
E. F. Zorina
2020 ◽  
Author(s):  
Amanda H. Schmidt ◽  
◽  
Melinda Quock ◽  
Alexandra Grande ◽  
Lee B. Corbett ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Consuele Morrone ◽  
Fabio Ietto

AbstractThis contribution focuses on a multidisciplinary research showing the geomorphological evolution and the beach sand composition of the Tyrrhenian shoreline between Capo Suvero promontory and Gizzeria Lido village (Calabria, southern Italy). The aim of the geomorphological analysis was to reconstruct the evolutionary shoreline stages and the present-day sedimentary dynamics along approximately 6 km of coastline. The results show a general trend of beach nourishment during the period 1870–2019. In this period, the maximum shoreline accretion value was estimated equal to + 900 m with an average rate of + 6.5 m/yr. Moreover, although the general evolutionary trend is characterized by a remarkable accretion, the geomorphological analysis highlighted continuous modifications of the beaches including erosion processes. The continuous beach modifications occurred mainly between 1953 and 1983 and were caused mainly by human activity in the coastal areas and inside the hydrographic basins. The beach sand composition allowed an assessment of the mainland petrological sedimentary province and its dispersal pattern of the present coastal dynamics. Petrographic analysis of beach sands identified a lithic metamorphi-clastic petrofacies, characterized by abundant fine-grained schists and phyllites sourced from the crystalline terrains of the Coastal Range front and carried by the Savuto River. The sand is also composed of a mineral assemblage comparable to that of the Amato River provenance. In terms of framework detrital constituents of QFL (quartz:feldspars:aphanitic lithic fragments) and of essential extraclasts, such as granitoid:sedimentary:metamorphic phaneritic rock fragments (Rg:Rs:Rm), sand maturity changes moderately from backshore to shoreface, suggesting that transport processes had a little effect on sand maturity. Moreover, the modal composition suggests that the Capo Suvero promontory does not obstruct longshore sand transport from the north. Indeed, sands displaced by currents driven by storm-wave activity bypass this rocky headland.


Author(s):  
Juan An ◽  
Jibiao Geng ◽  
Huiling Yang ◽  
Hongli Song ◽  
Bin Wang

Seepage plays a key role in nutrient loss and easily occurs in widely-used contour ridge systems due to the ponding process. However, the characteristics of nutrient loss and its influential factors under seepage with rainfall condition in contour ridge systems are still unclear. In this study, 23 seepage and rainfall simulation experiments are arranged in an orthogonal rotatable central composite design to investigate the role of ridge height, row grade, and field slope on Nitrate (NO3−–N) and Orthophosphate (PO4+3–P) losses resulting from seepage in contour ridge systems. In total, three types of NO3−–N and PO4+3–P loss were observed according to erosion processes of inter-rill–headward, inter-rill–headward–contour failure, and inter-rill–headward–contour failure–rill. Our results demonstrated that second-order polynomial regression models were obtained to predict NO3−–N and PO4+3–P loss with the independent variables of ridge height, row grade, and field slope. Ridge height was the most important factor for nutrient loss, with a significantly positive effect and the greatest contribution (52.35–53.47%). The secondary factor of row grade exerted a significant and negative effect, and was with a contribution of 19.86–24.11% to nutrient loss. The interaction between ridge height and row grade revealed a significantly negative effect on NO3−–N loss, whereas interactions among the three factors did not significantly affect PO4+3–P loss. Field slope only significantly affected NO3−–N loss. The optimal design of a contour ridge system to control nutrient loss was obtained at ridge height of 8 cm, row grade of 2°, and field slope of 6.5°. This study provides a method to assess and model nutrient loss, and improves guidance to implement contour ridge systems in terms of nutrient loss control.


Sign in / Sign up

Export Citation Format

Share Document