scholarly journals Restoring Sinus Rhythm Improves Excessive Heart Rate Response to Exercise in Patients With Atrial Fibrillation.

2003 ◽  
Vol 44 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Zerrin Yigit ◽  
Hülya Akdur ◽  
Ümit Arabaci ◽  
Hülya Nilgün Gürses ◽  
Deniz Güzelsoy
2000 ◽  
Vol 41 (4) ◽  
pp. 445-450 ◽  
Author(s):  
Kenji Ueshima ◽  
Masataka Nasu ◽  
Ikuo Segawa ◽  
Junnya Kamata ◽  
Noboru Kobayashi ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Marco Spartera ◽  
Guilherme Pessoa-Amorim ◽  
Antonio Stracquadanio ◽  
Adam Von Ende ◽  
Alison Fletcher ◽  
...  

Abstract Background Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows sophisticated quantification of left atrial (LA) blood flow, and could yield novel biomarkers of propensity for intra-cardiac thrombus formation and embolic stroke. As reproducibility is critically important to diagnostic performance, we systematically investigated technical and temporal variation of LA 4D flow in atrial fibrillation (AF) and sinus rhythm (SR). Methods Eighty-six subjects (SR, n = 64; AF, n = 22) with wide-ranging stroke risk (CHA2DS2VASc 0–6) underwent LA 4D flow assessment of peak and mean velocity, vorticity, vortex volume, and stasis. Eighty-five (99%) underwent a second acquisition within the same session, and 74 (86%) also returned at 30 (27–35) days for an interval scan. We assessed variability attributable to manual contouring (intra- and inter-observer), and subject repositioning and reacquisition of data, both within the same session (same-day scan–rescan), and over time (interval scan). Within-subject coefficients of variation (CV) and bootstrapped 95% CIs were calculated and compared. Results Same-day scan–rescan CVs were 6% for peak velocity, 5% for mean velocity, 7% for vorticity, 9% for vortex volume, and 10% for stasis, and were similar between SR and AF subjects (all p > 0.05). Interval-scan variability was similar to same-day scan–rescan variability for peak velocity, vorticity, and vortex volume (all p > 0.05), and higher for stasis and mean velocity (interval scan CVs of 14% and 8%, respectively, both p < 0.05). Longitudinal changes in heart rate and blood pressure at the interval scan in the same subjects were associated with significantly higher variability for LA stasis (p = 0.024), but not for the remaining flow parameters (all p > 0.05). SR subjects showed significantly greater interval-scan variability than AF patients for mean velocity, vortex volume, and stasis (all p < 0.05), but not peak velocity or vorticity (both p > 0.05). Conclusions LA peak velocity and vorticity are the most reproducible and temporally stable novel LA 4D flow biomarkers, and are robust to changes in heart rate, blood pressure, and differences in heart rhythm.


2018 ◽  
pp. 437-445
Author(s):  
Gregory S. Thomas

The chapter Heart Rate Response to Exercise reviews the studies performed to estimate a patient’s maximum predicted heart rate. While the commonly used formula (220 – age), developed in 1971, is easy to remember, it underestimates the actual maximum heart rate in older persons. Studies of large sample size have found the maximum heart rate to be relatively independent of sex and physical fitness but to incrementally decline with age. The decrease with age is less than 1 beat per minute per year, however. A more accurate and recommended formula is [(208) – (0.7)(age)] as developed by Tanaka and colleagues.


1992 ◽  
Vol 85 (Supplement) ◽  
pp. 3S-45
Author(s):  
Allen F. Bowyer ◽  
Rosemary A. Thomas

Sign in / Sign up

Export Citation Format

Share Document