The minimization problem for the sum of weighted convolution differences: the case of a given number of elements in the sum

Keyword(s):  
2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 509
Author(s):  
Iqra Hameed ◽  
Pham-Viet Tuan ◽  
Mario R. Camana ◽  
Insoo Koo

In this paper, we study the transmit power minimization problem with optimal energy beamforming in a multi-antenna wireless powered communication network (WPCN). The considered network consists of one hybrid access point (H-AP) with multiple antennae and multiple users with a single antenna each. The H-AP broadcasts an energy signal on the downlink, using energy beamforming to enhance the efficiency of the transmit energy. In this paper, we jointly optimize the downlink time allocation for wireless energy transfer (WET), the uplink time allocation for each user to send a wireless information signal to the H-AP, the power allocation to each user on the uplink, and the downlink energy beamforming vectors while controlling the transmit power at the H-AP. It is challenging to solve this non-convex complex optimization problem because it is numerically intractable and involves high computational complexity. We exploit a sequential parametric convex approximation (SPCA)-based iterative method, and propose optimal and sub-optimal solutions for the transmit power minimization problem. All the proposed schemes are verified by numerical simulations. Through the simulation results, we present the performance of the proposed schemes based on the effect of the number of transmit antennae and the number of users in the proposed WPCN. Through the performance evaluation, we show that the SPCA-based joint optimization solution performance is superior to other solutions.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 890
Author(s):  
Suthep Suantai ◽  
Kunrada Kankam ◽  
Prasit Cholamjiak

In this research, we study the convex minimization problem in the form of the sum of two proper, lower-semicontinuous, and convex functions. We introduce a new projected forward-backward algorithm using linesearch and inertial techniques. We then establish a weak convergence theorem under mild conditions. It is known that image processing such as inpainting problems can be modeled as the constrained minimization problem of the sum of convex functions. In this connection, we aim to apply the suggested method for solving image inpainting. We also give some comparisons to other methods in the literature. It is shown that the proposed algorithm outperforms others in terms of iterations. Finally, we give an analysis on parameters that are assumed in our hypothesis.


2019 ◽  
Vol 21 (1) ◽  
pp. 77-93
Author(s):  
Yansheng Shen

Abstract In this article, we first study the existence of nontrivial solutions to the nonlocal elliptic problems in ℝ N {\mathbb{R}^{N}} involving fractional Laplacians and the Hardy–Sobolev–Maz’ya potential. Using variational methods, we investigate the attainability of the corresponding minimization problem, and then obtain the existence of solutions. We also consider another Choquard type equation involving the p-Laplacian and critical nonlinearities in ℝ N {\mathbb{R}^{N}} .


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
François Dayrens ◽  
Simon Masnou ◽  
Matteo Novaga ◽  
Marco Pozzetta

AbstractWe introduce a notion of connected perimeter for planar sets defined as the lower semicontinuous envelope of perimeters of approximating sets which are measure-theoretically connected. A companion notion of simply connected perimeter is also studied. We prove a representation formula which links the connected perimeter, the classical perimeter, and the length of suitable Steiner trees. We also discuss the application of this notion to the existence of solutions to a nonlocal minimization problem with connectedness constraint.


Author(s):  
Nicole Bäuerle ◽  
Alexander Glauner

AbstractWe study the minimization of a spectral risk measure of the total discounted cost generated by a Markov Decision Process (MDP) over a finite or infinite planning horizon. The MDP is assumed to have Borel state and action spaces and the cost function may be unbounded above. The optimization problem is split into two minimization problems using an infimum representation for spectral risk measures. We show that the inner minimization problem can be solved as an ordinary MDP on an extended state space and give sufficient conditions under which an optimal policy exists. Regarding the infinite dimensional outer minimization problem, we prove the existence of a solution and derive an algorithm for its numerical approximation. Our results include the findings in Bäuerle and Ott (Math Methods Oper Res 74(3):361–379, 2011) in the special case that the risk measure is Expected Shortfall. As an application, we present a dynamic extension of the classical static optimal reinsurance problem, where an insurance company minimizes its cost of capital.


Author(s):  
Jan-Lucas Gade ◽  
Carl-Johan Thore ◽  
Jonas Stålhand

AbstractIn this study, we consider identification of parameters in a non-linear continuum-mechanical model of arteries by fitting the models response to clinical data. The fitting of the model is formulated as a constrained non-linear, non-convex least-squares minimization problem. The model parameters are directly related to the underlying physiology of arteries, and correctly identified they can be of great clinical value. The non-convexity of the minimization problem implies that incorrect parameter values, corresponding to local minima or stationary points may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound algorithm to identify the parameters to global optimality. The algorithm is tested on three clinical data sets, in each case using four increasingly larger regions around a candidate global solution in the parameter space. In all cases, the candidate global solution is found already in the initialization phase when solving the original non-convex minimization problem from multiple starting points, and the remaining time is spent on increasing the lower bound on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall procedure is in general very time-consuming.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


Sign in / Sign up

Export Citation Format

Share Document