Annual and Seasonal Variation of Heat Fluxes over the Indian Ocean using OAFlux Data

2012 ◽  
Vol 2 (2) ◽  
pp. 370-373
Author(s):  
K. V. Chacko K. V. Chacko ◽  
◽  
B. V. Charlotte B. V. Charlotte ◽  
G. Nageswara Rao ◽  
Vishnu M Bannur ◽  
...  
2009 ◽  
Vol 60 (2) ◽  
pp. 129 ◽  
Author(s):  
N. Caputi ◽  
S. de Lestang ◽  
M. Feng ◽  
A. Pearce

Previous studies have demonstrated that one area of greatest increase in surface sea temperatures (SST) (0.02°C per year) in the Indian Ocean over the last 50 years occurs off the lower west coast of Australia, an area dominated by the Leeuwin Current. The present paper examines water temperature trends at several coastal sites since the early 1970s: two rock lobster puerulus monitoring sites in shallow water (<5 m); four sites from a monitoring program onboard rock lobster vessels that provide bottom water temperature (<36 m); and an environmental monitoring site at Rottnest (0–50 m depth). Two global SST datasets are also examined. These data show that there was a strong seasonal variation in the historic increases in temperature off the lower west coast of Australia, with most of the increases (0.02–0.035°C per year) only focussed on 4–6 months over the austral autumn–winter with little or no increase (<0.01°C per year) apparent in the austral spring–summer period. These increases are also apparent after taking into account the interannual variation in the strength of the Leeuwin Current. The warming trend results in a change to the seasonal temperature cycle over the decades, with a delay in the peak in the temperature cycle during autumn between the 1950s and 2000s of ~10–20 days. A delay in the timing of the minimum temperature is also apparent at Rottnest from August–September to October. This seasonal variation in water temperature increases and its effect on the annual temperature cycle should be examined in climate models because it provides the potential to better understand the specific processes through which climate change and global warming are affecting this region of the Indian Ocean. It also provides an opportunity to further test the climate models to see whether this aspect is predicted in the future projections of how increases will be manifest. Any seasonal variation in water temperature increase has important implications for fisheries and the marine ecosystem because it may affect many aspects of the annual life cycle such as timing of growth, moulting, mating, spawning and recruitment, which have to be taken into account in the stock assessment and management of fisheries.


2018 ◽  
Vol 18 (13) ◽  
pp. 9243-9261 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterise the frequent new particle formation (NPF) events observed at the Maïdo observatory, Réunion, a Southern Hemisphere site located at 2150 m (a.s.l.) and surrounded by the Indian Ocean. From May 2014 to December 2015, continuous aerosol measurements were made using both a differential mobility particle sizer (DMPS) and an air ion spectrometer (AIS) to characterise the NPF events down to the lowest particle-size scale. Carbon monoxide (CO) and black carbon (BC) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation in the NPF frequency, with a maximum observed during transition periods (autumn and spring). A high yearly median particle growth rate (GR) of 15.16 nm h−1 is also measured showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3 s−1, respectively, with a seasonal variation showing a maximum during winter, that correspond to low temperature and RH typical of the dry season, but also to high BC concentrations. We show that the condensation sink exceeds a threshold value (1.04×10−3 s−1) with a similar seasonal variation than the one of the NPF event frequency, suggesting that the occurrence of the NPF process might be determined by the availability of condensable vapours, which are likely to be transported together with pre-existing particles from lower altitudes.


2007 ◽  
Vol 20 (13) ◽  
pp. 3190-3209 ◽  
Author(s):  
Lisan Yu ◽  
Xiangze Jin ◽  
Robert A. Weller

Abstract This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products. This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis. The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Qnet have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Qnet variabilities over the basin scale.


2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

&lt;p&gt;Using the Gauss&amp;#8211;Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Ni&amp;#241;o-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.&lt;/p&gt;


1997 ◽  
Vol 102 (C9) ◽  
pp. 21147-21159 ◽  
Author(s):  
U. Garternicht ◽  
F. Schott

2010 ◽  
Vol 23 (20) ◽  
pp. 5375-5403 ◽  
Author(s):  
Agus Santoso ◽  
Alexander Sen Gupta ◽  
Matthew H. England

Abstract The genesis of mixed layer temperature anomalies across the Indian Ocean are analyzed in terms of the underlying heat budget components. Observational data, for which a seasonal budget can be computed, and a climate model output, which provides improved spatial and temporal coverage for longer time scales, are examined. The seasonal climatology of the model heat budget is broadly consistent with the observational reconstruction, thus providing certain confidence in extending the model analysis to interannual time scales. To identify the dominant heat budget components, covariance analysis is applied based on the heat budget equation. In addition, the role of the heat budget terms on the generation and decay of temperature anomalies is revealed via a novel temperature variance budget approach. The seasonal evolution of the mixed layer temperature is found to be largely controlled by air–sea heat fluxes, except in the tropics where advection and entrainment are important. A distinct shift in the importance and role of certain heat budget components is shown to be apparent in moving from seasonal to interannual time scales. On these longer time scales, advection gains importance in generating and sustaining anomalies over extensive regions, including the trade wind and midlatitude wind regimes. On the other hand, air–sea heat fluxes tend to drive the evolution of thermal anomalies over subtropical regions including off northwestern Australia. In the tropics, however, they limit the growth of anomalies. Entrainment plays a role in the generation and maintenance of interannual anomalies over localized regions, particularly off Sumatra and over the Seychelles–Chagos Thermocline Ridge. It is further shown that the spatial distribution of the role and importance of these terms is related to oceanographic features of the Indian Ocean. Mixed layer depth effects and the influence of model biases are discussed.


2020 ◽  
Vol 125 (5) ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu‐Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

Observations of palaearctic waders during the first three phases of the Royal Society Expedition to Aldabra, between 1 September 1967 and 14 March 1968 are listed and compared with those from other places in the area. Seventeen species are included in the check list, of which four are considered vagrants, and the rest more or less regular migrants. Counts made during the expedition with the intention of finding the seasonal variation in numbers of the birds have proved statistically invalid, and only a few tentative conclusions may be drawn from them. The Turnstone, Arenaria i. inter pres , may be a winter resident in fair numbers, as may the Whimbrel, Numenius p. phaeopns . Although no firm conclusion can be drawn, it is suggested that most of the other birds are passage migrants, with few staying at Aldabra for the winter. Thus the island is not an important wintering ground for any species, though it probably has some value as a resting place for the birds during their migratory flights. For the Crab Plover, Dromas ardeola , however, it may be one of the few wintering grounds where the species occurs in any numbers, and as such important. The suggestion is made that the other islands in the Indian Ocean, east of the axis of Madagascar, may function not as a destination but as a ‘safety net’ for vagrant birds or flocks.


2016 ◽  
Vol 29 (24) ◽  
pp. 9077-9095 ◽  
Author(s):  
Lu Dong ◽  
Michael J. McPhaden

Abstract Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, this study shows that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10°S. Evidence is presented from a wide variety of data sources showing that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming, presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling-favorable wind stress curls between 10° and 20°S and upwelling-favorable wind stress curls between the equator and 10°S. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and offshore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Although highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.


Sign in / Sign up

Export Citation Format

Share Document