Study of enzyme chitinase produced by Bacillus subtilis and it’s antifungal activity against Aspergillus species

2012 ◽  
Vol 3 (5) ◽  
pp. 503-504
Author(s):  
Megha H. Shende ◽  
◽  
Arun B. Ingle ◽  
Megha M. Kumbalwar
2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 585
Author(s):  
Marie-Louise Heymich ◽  
Laura Nißl ◽  
Dominik Hahn ◽  
Matthias Noll ◽  
Monika Pischetsrieder

The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.


Author(s):  
Gordana Dimic ◽  
Suncica Kocic-Tanackov ◽  
Dragana Karalic

The antifungal activity of spice extracts obtained from caraway seed, garlic and origanum was tested against antifungal activity of Eurotium herbariorum E. amstelodami, Aspergillus flavus and A. sydowii. Caraway seed extract has been proved to possess the highest inhibitory effect on all investigated mould species. The concentrations of caraway extract, sufficient to inhibit the growth completely were: 0,5% for E. herbariorum, E. amstelodami and A. sydowii, and 1% for A. flavus; of garlic, 1% for Eurotium spp. and 2% for A. sydowii, and of origanum, 1% for E. herbariorum and 2% for E. amstelodami. The results of colonies diameter measuring showed that garlic and origanum extracts have no significant suppressing ability on micellar growth of A. flavus, while garlic was more efficient in other test cultures.


2019 ◽  
Vol 51 (1) ◽  
pp. 265-269
Author(s):  
Mileidy Cruz-Martín ◽  
Eilyn Mena ◽  
Mayra Acosta-Suárez ◽  
Tatiana Pichardo ◽  
Eloisa Rodriguez ◽  
...  

2004 ◽  
Vol 31 (5) ◽  
pp. 199-203 ◽  
Author(s):  
Sonia Savluchinske Feio ◽  
Ana Barbosa ◽  
Manuela Cabrita ◽  
Lina Nunes ◽  
Alexandra Esteves ◽  
...  

2012 ◽  
Vol 7 (2) ◽  
pp. 50-55 ◽  
Author(s):  
Hossein Mohammadpour ◽  
Eskandar Moghimipour ◽  
Iraj Rasooli ◽  
Mohammad Hadi Fakoor ◽  
Shakiba Alipoor Astaneh ◽  
...  

2020 ◽  
Vol 21 ◽  
pp. 00015
Author(s):  
Anzhela Asaturova ◽  
Evgeny Gyrnets ◽  
Valeria Allakhverdian ◽  
Mikhail Astakhov ◽  
Ksenia Saenko

We studied the antifungal activity of the Bacillus subtilis BZR 336g strain against the test culture of the fungus Fusarium oxysporum var. orthoceras App. et Wr. BZR 6, depending on the addition of citric acid crystalline hydrate, a microelements solution and corn extract to the liquid nutrient medium. It was found that citric acid at a concentration of 15 g/l improves the bioavailability of microelements and increases antifungal activity. Corn extract and microelements without the formation of a chelate form with citric acid do not affect the fungicidal properties of B. subtilis BZR 336g. However, the corn extract at a concentration of 3 g / l increases the titer of bacteria in the liquid culture from 2 ± 0.1 × 108 to 1 ± 0.08 × 108 CFU/ml. The combined use of the studied components allowed us to achieve a significant increase in the antifungal activity of B. subtilis BZR 336g by 3.1 times. At the same time, the effect of synergism in their complex interaction was noted, which is probably due to a qualitative and quantitative change in the composition of B. subtilis BZR 336g antifungal metabolites.


2014 ◽  
Vol 81 (1) ◽  
pp. 422-431 ◽  
Author(s):  
Chuping Luo ◽  
Xuehui Liu ◽  
Huafei Zhou ◽  
Xiaoyu Wang ◽  
Zhiyi Chen

ABSTRACTBacilluscyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features ofBacillusstrains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology.Bacillus subtilis916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome ofB. subtilis916 contains four nonribosomal peptide synthase (NRPS) gene clusters,srf,bmy,fen, andloc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studyingB. subtilis916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activityin vitro, the strain mutated insrfAAhad significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other thanfenresulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion,B. subtilis916 coproduces four families of LPs which contribute to the phenotypic features ofB. subtilis916 in an intricate way.


Sign in / Sign up

Export Citation Format

Share Document