scholarly journals Acid-Catalyzed Hydrolysis of Lignocellulosic Biomass in Ionic Liquids for Ethanol Production: Opportunities & Challenges

BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Shengdong Zhu ◽  
Ke Wang ◽  
Wenjing Huang ◽  
Wangxiang Huang ◽  
Bo Cheng ◽  
...  
Author(s):  
Juliana Alves Araújo ◽  
Thiago Lucas de Abreu-Lima ◽  
Solange Cristina Carreiro

Ethanol production from lignocellulosic biomass is of economic interest due to the pressure to reduce fossil fuels consumption and land use for non-edible crops. Xylose is one of the main sugars obtained by hydrolysis of hemicellulose fraction of biomass, but industrial yeasts cannot ferment it. This work aimed to select, characterize and identify xylose-fermenting yeasts from Brazilian microorganisms collections with potential use in ethanol production. Xylose assimilation was tested by replica plating, and fermentation was tested with Durham tubes. Xylose-fermenting strains had their fermentative capacity quantified and compared to a reference strain (Scheffersomyces stipitis UFMG-IMH 43.2) and were identified by molecular techniques. Three strains isolated from plant exudates were able to ferment xylose and showed fermentative parameters similar to the reference strain. Two strains were identified as Candida parapsilosis and one was identified as Meyerozyma guilliermondii. The findings show the potential biotechnological use of these microorganisms.


2014 ◽  
Vol 16 (11) ◽  
pp. 4659-4662 ◽  
Author(s):  
Max A. Mellmer ◽  
David Martin Alonso ◽  
Jeremy S. Luterbacher ◽  
Jean Marcel R. Gallo ◽  
James A. Dumesic

The use of γ-valerolactone as solvent for acid-catalyzed biomass hydrolysis reactions increases reaction rates compared to reactions carried out in water.


2016 ◽  
Vol 49 (8) ◽  
pp. 809-813 ◽  
Author(s):  
Kosuke Kuroda ◽  
Ken Inoue ◽  
Kyohei Miyamura ◽  
Kenji Takada ◽  
Kazuaki Ninomiya ◽  
...  

BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 1-2
Author(s):  
Qijun Wang ◽  
Yuanxin Wu ◽  
Shengdong Zhu

Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


1980 ◽  
Vol 45 (7) ◽  
pp. 1959-1963 ◽  
Author(s):  
Dušan Joniak ◽  
Božena Košíková ◽  
Ludmila Kosáková

Methyl 4-O-(3-methoxy-4-hydroxybenzyl) and methyl 4-O-(3,5-dimethoxy-4-hydroxybenzyl)-α-D-glucopyranoside and their 6-O-isomers were prepared as model substances for the ether lignin-saccharide bond by reductive cleavage of corresponding 4,6-O-benzylidene derivatives. Kinetic study of acid-catalyzed hydrolysis of the compounds prepared was carried out by spectrophotometric determination of the benzyl alcoholic groups set free, after their reaction with quinonemonochloroimide, and it showed the low stability of the p-hydroxybenzyl ether bond.


1986 ◽  
Vol 51 (12) ◽  
pp. 2786-2797
Author(s):  
František Grambal ◽  
Jan Lasovský

Kinetics of formation of 1,2,4-oxadiazoles from 24 substitution derivatives of O-benzoylbenzamidoxime have been studied in sulphuric acid and aqueous ethanol media. It has been found that this medium requires introduction of the Hammett H0 function instead of the pH scale beginning as low as from 0.1% solutions of mineral acids. Effects of the acid concentration, ionic strength, and temperature on the reaction rate and on the kinetic isotope effect have been followed. From these dependences and from polar effects of substituents it was concluded that along with the cyclization to 1,2,4-oxadiazoles there proceeds hydrolysis to benzamidoxime and benzoic acid. The reaction is thermodynamically controlled by the acid-base equilibrium of the O-benzylated benzamidoximes.


Sign in / Sign up

Export Citation Format

Share Document