scholarly journals Load-carrying Capacity of Intermediately Slender Parallel Strand Bamboo Columns with a Rectangular Cross Section under Biaxial Eccentric Compression

BioResources ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaorui Wang ◽  
Aiping Zhou ◽  
Ying Hei Chui
2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2018 ◽  
Vol 219 ◽  
pp. 02002
Author(s):  
Małgorzata Gordziej-Zagórowska ◽  
Elżbieta Urbańska-Galewska

The influence of eccentricity at intersections of truss members on the load carrying capacity of the truss joint is presented in the paper. The research truss elements were designed as cold-formed open cross section. Analytical calculations, numerical analysis and experimental research were conducted to reveal how the eccentricity affects the effort of material in the joint area. The results of analysis and investigations are compared and discussed. The main achievement of the tests carried out is statement that slender plane members of the compression chords are safe compared with the results of analytical calculations.


1991 ◽  
Vol 18 (1) ◽  
pp. 118-129
Author(s):  
Murray C. Temple ◽  
Kenneth Hon-Wa Mok

In some large industrial buildings, it is common to span large areas by using primary trusses in one direction and secondary trusses in the other. The secondary trusses frame into the vertical web members in the primary trusses. Starred angles are frequently used as the vertical web members in the primary trusses because of their symmetrical cross section and the ease with which the connections can be made. These starred angles are usually designed as axially loaded members, but the open nature of the cross section and the fact that the secondary truss frames into one of the angles has raised some doubts about this loading assumption. As a result of this concern, an experimental research program was undertaken to investigate the behaviour and strength of starred angle web members supporting secondary trusses. The results obtained indicate that these starred angle compression members are not concentrically loaded, as the stress distribution across the angles is not uniform. It was found that if the slenderness ratio is modified in accordance with the requirements of ASCE Manual 52, the load-carrying capacity of the starred angles supporting secondary trusses can be determined using Clause 13.3.1 of CAN3-S16.1-M84. Key words: angles (starred), buckling, columns (structural), connections, trusses.


2014 ◽  
Vol 969 ◽  
pp. 39-44
Author(s):  
Jan Valeš

The presented paper deals with the load-carrying capacity analysis of compress steel members having the square closed (box) cross-section with non-dimensional slenderness 0.6, 0.8, 1.0 a 1.2. The axis of these beams is randomly three-dimensionally curved. Initial curvatures are modelled by random fields applying the LHS method. Load-carrying capacities are then calculated by the geometrically nonlinear solution using the ANSYS program. The results are presented both in form of histograms and of the table. The analysis of load-carrying capacity of beams with individual nonlinear slenderness is carried out, and the values are compared with the values of design load-carrying capacity according to the standard.


1999 ◽  
Vol 121 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. Błachut ◽  
O. R. Jaiswal

Localized and global, of eigenmode type, initial geometric imperfections were superimposed on perfect torispherical, ellipsoidal, and toroidal shells of circular and elliptical cross section. Reduction of the load-carrying capacity was then calculated numerically for various geometries and the yield point of material which was assumed to be mild steel. Results show that the buckling strength of torispheres and ellipsoids could be strongly affected by imperfections, but reduction of its magnitude was dependent on the choice of imperfection shape and, more importantly, on the imperfection’s location. Calculations carried out for closed toroids of circular cross section show that these shells are not sensitive to eigenmode-type imperfections, while toroids with elliptical cross sections are sensitive to eigen-imperfections.


2018 ◽  
Vol 4 (6) ◽  
pp. 1193 ◽  
Author(s):  
Lujain Haider ◽  
Haider M. Mekkiyah

Experimental model tests were carried out to study the response of skirted foundation resting on dry sand.  The experiments were performed in a large soil container (1000  1000 mm in cross section and 800 mm in height).  Skirts with three different lengths (L) varied from 0.5D to 1.5D was attached to the edge of shallow circular foundations having three different diameters (D=60, 90 and 120 mm). Different parameters have been studied; these parameters involve skirt length, foundation size and skirt conditions. Skirts with open end and closed end were used. The relative density was kept constant and equals to 60%. The case of foundation without skirt (L=0) was initially tested and set as a reference for comparison purpose. From the results of experimental tests, it was found that the skirt modifies the load-settlement behaviour, increasing the load carrying capacity and reducing the foundation settlement. The results also indicate that load carrying capacity of skirted foundation increases with increase skirt length as well as foundation size. The results show that using skirt with closed end brought a considerable increase in load carrying capacity than that of open end.


1938 ◽  
Vol 42 (328) ◽  
pp. 343-346

In the present paper two forms of instability of monocoque structures in pure bending have been discussed in extenso, viz., the flattening and the local buckling. For ease of calculation it is assumed that the structure is cylindrical, of circular cross section and consisting of a great number of evenly spaced uniform longitudinal stiffeners, denoted stringers and of several evenly spaced uniform transverse stiffeners, called rings. The applicability of the results obtained to practical fuselages of non-circular cross section and the effect of different neglections have been dealt with in §§15 and 20.I.—Preliminary to the discussion of the above problems, the results obtained by different authors concerning both the load carrying capacity of panels after buckling and the failure of stringers have been collected in Part I.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
А. А. Чернильник

Состояние проблемы. Сжатые железобетонные элементы изготавливаются по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что соответствует действительности лишь в вибрированных колоннах. Результаты. Разработан усовершенствованный нормативный подход к расчету прочности центрифугированных и виброцентрифугированных железобетонных колонн, заключающийся в использовании в расчете интегральных или дифференциальных характеристик бетона. Выводы. Расчет прочности коротких центрально сжатых вибрированных, центрифугированных и виброцентрифугированных колонн по усовершенствованному нормативному подходу дал наилучшие результаты с использованием дифференциальных характеристик бетона, различающихся по сечению. Statement of the problem. Compressed reinforced concrete elements are manufactured according to three main technologies - vibrating, centrifuging and vibrocentrifugation. However, all the main calculated dependences for determining their load-bearing capacity were derived based on the main postulate - the constancy and equality of the characteristics of concrete over the cross section, which corresponds to reality only in vibrated columns. Results. An improved regulatory approach has been developed for calculating the strength of centrifuged and vibrocentrifuged reinforced concrete columns, which involves using the calculation of integral or differential characteristics of concrete. Conclusions. Strength analysis of short centrally compressed vibrated, centrifuged and vibrocentrifuged columns using an improved regulatory approach yielded the best results using differential characteristics of concrete varying in cross section.


2011 ◽  
Vol 462-463 ◽  
pp. 265-270
Author(s):  
Xiu Gen Jiang ◽  
Ning Xu ◽  
Xu Dong Shi ◽  
Yu Huan Wu ◽  
Xing Hua Chen ◽  
...  

The performance of the casing-plug joint, including load carrying capacity, stiffness, failure modes, and its influence factors of the casing tubes set inside and outside of the main tubes are analyzed by simulating square steel tube casing-plug joints structures with ANSYS software in this paper. The formulas of the optimum l/L for the joints with the size of the main tube cross-section 200mm× 200mm are given in this paper.


Sign in / Sign up

Export Citation Format

Share Document