scholarly journals Fundamental studies for designing insulation panels from wood shavings and filamentous fungi

BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 5506-5520
Author(s):  
Guido Wimmers ◽  
Julia Klick ◽  
Linda Tackaberry ◽  
Cora Zwiesigk ◽  
Keith Egger ◽  
...  

The production of environmentally friendly thermal insulation boards is important for the building industry to reduce its environmental impact. The primary objective of this study was to test the feasibility of producing wood-based insulation panels as well as to use fungi as a binding agent and to explore whether a bio-based composite could be a viable alternative to the standard traditional foam insulation board and more expensive wood fibreboards (mainly available in European markets). Experiments were conducted to determine which combinations of wood fibers from selected northern tree species, wood decay fungi, and growth conditions were most suitable for panel making. The results showed that under the determined optimal growth conditions, Polyporus arcularius and Trametes suaveolens on birch wood shavings provided the best combination. Outcomes from initial physical screening tests, particularly thermal conductivity, suggested that these panels had a comparable performance to traditional insulation material.

Author(s):  
Jiří Holan ◽  
Blanka Stávková

This work focus on comparison of biological degradation of wood caused by wood-decay fungi (white and brown rot). Test samples were made of European Beech Fagus sylvatica (L.). As wood-decay fungi were used Trametes versicolor (L.) Lloyd (white rot) and Serpula lacrymans (Wulf. Ex Fr.) Schroet (brown rot). Aim of this work was comparison of rate of propagation of wood-decay fungus and degradation of wood in time. After termination of the test was made comparison of intensity of degradation between both fungi species. Weights of test samples were diminishing for both groups of wood-decay fungi during three months. Moisture content increased in direct proportion with time. Compression strength in direction of wood fibers of tested samples was diminishing. Samples tested by Serpula lacrymans had the fastest decrease of compression strength after first and second week of degradation. Samples tested by Trametes versicolor had different course. Compression strength significantly decreased after first month and third month of degradation. On the other hand module of elasticity of both tested groups was diminishing already during first and second week of degradation. Generally, it is possible to say that Trametes versicolor has more significant impact on changes of mechanical characteristic of wood, because it causes degradation of all chemical constituents of wood.


2020 ◽  
Vol 14 (3) ◽  
pp. 1801-1808
Author(s):  
Nawaf I. Alshammari ◽  
Vajid N. Veettil ◽  
Abdel Moneim E. Sulieman ◽  
S.L. Stephenson

Environmental factors such as temperature and humidity directly affect the growth and fruit bodies of fungi. We studied the diversity of wood decaying fungal species, which have grown on same substrate in forest as well as laboratory environment. Ten specimens of fruit body of wood-decaying fungi and 24 random pieces of coarse wooden debris were collected from the forest of northwest Arkansas. The samples of coarse woody debris were incubated in laboratory-growth chambers for two months to promote the fungal growth. Fourty-two different species of wood-decay fungal isolates were recovered and identified by internal transcribed spacer (ITS) region sequencing. The isolates from the forest belonged to twenty-two different taxa whereas twenty taxonomic groups were reported from the growth compartments. Remarkably, data observed from two sets did not shared any taxon. These results indicated that environmental growth conditions play crucial role on fungal diversity even if grown on same substrates.


1992 ◽  
Vol 12 (9) ◽  
pp. 3827-3833 ◽  
Author(s):  
T H Adams ◽  
W A Hide ◽  
L N Yager ◽  
B N Lee

In contrast to many other cases in microbial development, Aspergillus nidulans conidiophore production initiates primarily as a programmed part of the life cycle rather than as a response to nutrient deprivation. Mutations in the acoD locus result in "fluffy" colonies that appear to grow faster than the wild type and proliferate as undifferentiated masses of vegetative cells. We show that unlike wild-type strains, acoD deletion mutants are unable to make conidiophores under optimal growth conditions but can be induced to conidiate when growth is nutritionally limited. The requirement for acoD in conidiophore development occurs prior to activation of brlA, a primary regulator of development. The acoD transcript is present both in vegetative hyphae prior to developmental induction and in developing cultures. However, the effects of acoD mutations are detectable only after developmental induction. We propose that acoD activity is primarily controlled at the posttranscriptional level and that it is required to direct developmentally specific changes that bring about growth inhibition and activation of brlA expression to result in conidiophore development.


Author(s):  
Cédric Cabral Almada ◽  
Mathilde Montibus ◽  
Frédérique Ham-Pichavant ◽  
Sandra Tapin-Lingua ◽  
Gilles Labat ◽  
...  

Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 58 ◽  
Author(s):  
Carolina Elena Girometta ◽  
Annarosa Bernicchia ◽  
Rebecca Michela Baiguera ◽  
Francesco Bracco ◽  
Simone Buratti ◽  
...  

One of the main aims of the University of Pavia mycology laboratory was to collect wood decay fungal (WDF) strains in order to deepen taxonomic studies, species distribution, officinal properties or to investigate potential applications such as biocomposite material production based on fungi. The Italian Alps, Apennines and wood plains were investigated to collect Basidiomycota basidiomata from living or dead trees. The purpose of this study was to investigate the wood decay strains of the Mediterranean area, selecting sampling sites in North and Central Italy, including forests near the Ligurian and Adriatic seas, or near the Lombardy lakes. The isolation of mycelia in pure culture was performed according to the current methodology and the identity of the strains was confirmed by molecular analyses. The strains are maintained in the Research Culture Collection MicUNIPV of Pavia University (Italy). Among the 500 WDF strains in the collection, the most interesting isolates from the Mediterranean area are: Dichomitus squalens (basidioma collected from Pinus pinea), Hericium erinaceus (medicinal mushroom), Inocutis tamaricis (white-rot agent on Tamarix trees), Perenniporia meridionalis (wood degrader through Mn peroxidase) and P. ochroleuca. In addition, strains of species related to the Mediterranean climate (e.g., Fomitiporia mediterranea and Cellulariella warnieri) were obtained from sites with a continental-temperate climate.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyudmila P. Trenozhnikova ◽  
Almagul K. Khasenova ◽  
Assya S. Balgimbaeva ◽  
Galina B. Fedorova ◽  
Genrikh S. Katrukha ◽  
...  

We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified asStreptomycessp. IMV-70. In the process of fermentation, the strainStreptomycesspp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Eric Otto ◽  
Benjamin Held ◽  
Samuel Redford ◽  
Robert A. Blanchette

Heterobasidion irregulare is one of the most problematic forest pathogens in the northern hemisphere, but has only been found relatively recently in the north central United States. Discovered in Wisconsin in 1993, but probably established sometime before that, it quickly spread throughout the state. In November 2014, it was found in southeastern Minnesota. Field surveys were then conducted throughout Minnesota with the focus in the southeast near the initial discovery. To find additional infection sites, surveys were conducted with accompanying aerial imagery of red pine (Pinus resinosa Aiton) stands that were previously thinned. Samples were collected from selected sites with dead and dying trees as well as samples from stumps in recently thinned pine stands. These samples were processed first with a nested polymerase chain reaction (PCR) protocol, which was replaced by a real-time PCR assay after its development. No samples tested positive for H. irregulare using these methods and no cultures from isolations were obtained outside the original infection area. Other indigenous fungi were also identified. The majority were wood decay fungi in the Basidiomycota. A spore collection study was also conducted after field surveys. Automated rotary arm spore collectors were used and assayed with an ITS TaqMan real-time PCR assay. Collectors were placed strategically in different areas of Minnesota. A positive control was used in an infected red pine plantation in Wisconsin and this location had the highest number of spores trapped, with 63,776 over a week period. Spores of H. irregulare were detected at several sites in Minnesota, with the highest spore total observed in traps at 413 over a week period. All other locations sampled also had some spores collected except Itasca State Park located in northwestern Minnesota. The weekly deposition of spores ranged from 0 to 1.26 m−2 h−1. Low spore levels occurring in Minnesota indicate that some spores are present, but they are currently being detected in amounts that may not be sufficient for colonization to be successful.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


1970 ◽  
Vol 48 (9) ◽  
pp. 1541-1551 ◽  
Author(s):  
R. B. Smith ◽  
H. M. Craig ◽  
D. Chu

Fungal deterioration of second-growth Douglas-fir logs, felled each month from August 1961 to May 1962, was studied 2, 4, and 6 years after felling. Decay increased from 10% of log volumes after 2 years to 47% after 6 years. The rate of decay, particularly for the brown cubical type, was greater for autumn- and winter-felled logs than for those felled in the spring and late summer, and closely paralleled the seasonal pattern of ambrosia beetle attack.Decay rates increased with decreasing log size, increasing percentage of sapwood, and increasing height of log above ground. For the same diameter of log, base logs decayed less rapidly than second logs, possibly because of their lower proportion of sapwood in relation to heartwood.Decay expressed as a percentage of total log volume (Y) may be estimated (R2 = 0.71) with the following equation: Y = 13.2 + 10.7X1 − 3.2X2, where X1 = years elapsed and X2 = d.i.b. (diameter inside bark) top of log.Of 30 wood-decay fungi isolated, Naematoloma sp. (N. capnoides or N. fasciculare), which causes a white rot, was associated with the most decay. Fomes pinicola was mainly responsible for brown cubical sap rot, while Poria monticola and P. carbonica caused a brown cubical heart rot at the ends of logs.The significance of variations in deterioration rate and fungal associates is discussed in relation to log durability and salvability.


Sign in / Sign up

Export Citation Format

Share Document