Effect of infill value on decay resistance, thermal, and mechanical properties of 3D printed polylactic acid composites filled with wood fibers

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6724-6734
Author(s):  
Yufeng Sun ◽  
Danbee Lee ◽  
Yapeng Wang ◽  
Suiliang Li ◽  
Jilai Ying ◽  
...  

Polylactic acid (PLA)-based composites with wood filler were 3D-printed using fused deposition modeling (FDM) at different infill settings (i.e., 10 to 100%) to evaluate their strength and biodegradation properties. Microvoids were present in the commercial wood-filled PLA filaments. Wood-PLA filament had reduced thermal stability compared with mineral-filled PLA filament due to the presence of thermally degradable wood flour. The printed composites had a denser internal structure with increased infill. The flexural modulus of elasticity and modulus of rupture also increased with infill value. Sixteen-week fungi test performed using a brown rot, Postia placenta, and a white rot, Irpex lacteus, did not lead to significant sample weight loss and strength reduction for composites at various infill values. Therefore, 3D printed composites with PLA-based filament containing 30 wt.% wood fiber were shown to be resistant to biodegradation by common decay fungi.

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1334 ◽  
Author(s):  
Teng-Chun Yang ◽  
Chin-Hao Yeh

In this study, a wood fiber/polylactic acid composite (WPC) filament was used as feedstock to print the WPC part by means of fused deposition modeling (FDM). The morphology and mechanical properties of WPC parts printed at different speeds (30, 50, and 70 mm/s) were determined. The results show that the density of the printed WPC part increased as the printing speed decreased, while its surface color became darker than that of parts printed at a high speed. The printing time decreased with an increasing printing speed; however, there was a small difference in the time saving percentage without regard to the dimensions of the printed WPC part at a given printing speed. Additionally, the tensile and flexural properties of the printed WPC part were not significantly influenced by the printing speed, whereas the compressive strength and modulus of the FDM-printed part significantly decreased by 34.3% and 14.6%, respectively, when the printing speed was increased from 30 to 70 mm/s. Furthermore, scanning electronic microscopy (SEM) illustrated that the FDM process at a high printing speed produced an uneven surface of the part with a narrower width of printed layers, and pull-outs of wood fibers were more often observed on the fracture surface of the tensile sample. These results show that FDM manufacturing at different printing speeds has a substantial effect on the surface color, surface roughness, density, and compressive properties of the FDM-printed WPC part.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012039
Author(s):  
V Sekar ◽  
S Y Eh Noum ◽  
S Sivanesan ◽  
A Putra ◽  
Dg H Kassim ◽  
...  

Abstract In recent times, Additive Manufacturing (AM) has been applied rapidly in almost all fields. This study was conducted to apply the additive manufacturing into an acoustic application by 3D printing the Micro-Perforated Panels (MPP) through Fused Deposition Modelling (FDM) made of Polylactic Acid (PLA) reinforced with wood fibers. MPP were fabricated by altering its perforation volume. Later, the effect of perforation volume on acoustic absorption of the fabricated MPP was measured using the two-microphone impedance tube method as per ISO 10534-2 standard. The result shows altering the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness of 2 mm and a perforation diameter of 0.2 mm shows the maximum sound absorption coefficient of 0.93 at 2173 Hz. It is made possible to absorb the 3D printed MPP made of natural fiber reinforced composite at different spectrums by altering the perforation volume.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 976 ◽  
Author(s):  
Teng-Chun Yang

Wood fiber-reinforced polylactic acid (PLA) composites (WFRPCs) were used as a filament to manufacture the unidirectional WFRPC components by means of fused deposition modeling (FDM). The physico-mechanical properties of the WFRPC components printed at different extrusion temperatures (200, 210, 220, and 230 °C) were determined. The results revealed that most of the physical properties (moisture content, surface roughness, water absorption rate, and thickness swelling rate) of the printed WFRPC component were not significantly influenced by extrusion temperature, while its density and color difference increased as the extrusion temperature increased. Additionally, the tensile and flexural properties of the FDM-printed WFRPC component decreased when the extrusion temperature was more than 200 °C, whereas the compressive strength and internal bond strength increased by 15.1% and 24.3%, respectively, when the extrusion temperature was increased from 200 to 230 °C. Furthermore, scanning electronic microscopy (SEM) demonstrated that the fracture surface of the tensile component printed at a higher extrusion temperature exhibited a better compatibility at fiber/PLA interfaces and good adhesion between the extruded filament segments. These results indicate that the FDM printing process using different extrusion temperatures has a substantial impact on the surface color, density, and mechanical properties of the printed WFRPC component.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7122-7138
Author(s):  
Sang-U Bae ◽  
Young-Rok Seo ◽  
Birm-June Kim ◽  
Min Lee

Fused deposition modeling (FDM) 3D printing technology is the most common system for polymer additive manufacturing (AM). Recent studies have been conducted to expand both the range of materials that can be used for FDM and their applications. As a filler, wood flour was incorporated into poly lactic acid (PLA) polymer to develop a biocomposite material. Composite filaments were manufactured with various wood flour contents and then successfully used for 3D printing. Morphological, mechanical, and biodegradation properties of FDM 3D-printed PLA composites were investigated. To mitigate brittleness, 5 phr of maleic anhydride grafted ethylene propylene diene monomer (MA-EPDM) was added to the composite blends, and microstructural properties of the composites were examined by scanning electron microscopy (SEM). Mechanical strength tests demonstrated that elasticity was imparted to the composites. Additionally, test results showed that the addition of wood flour to the PLA matrix promoted pore generation and further influenced the mechanical and biodegradation properties of the 3D-printed composites. An excellent effect of wood flour on the biodegradation properties of FDM 3D-printed PLA composites was observed.


Soft Matter ◽  
2018 ◽  
Vol 14 (48) ◽  
pp. 9838-9846 ◽  
Author(s):  
Kuan-Che Feng ◽  
Adriana Pinkas-Sarafova ◽  
Vincent Ricotta ◽  
Michael Cuiffo ◽  
Linxi Zhang ◽  
...  

With the increase in popularity of 3D printing, an important question arises as to the equivalence between devices manufactured by standard methods vs. those presenting with identical bulk specifications, but manufactured via fused deposition modeling (FDM) printing.


Sign in / Sign up

Export Citation Format

Share Document