Modal analysis of violin bodies with back plates made of different wood species

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7687-7713
Author(s):  
Vasile Ghiorghe Gliga ◽  
Mariana Domnica Stanciu ◽  
Silviu Marian Nastac ◽  
Mihaela Campean

This research investigated the potential of some European wood species for use in the manufacturing of the back plates of violins as an alternative to the quite rare curly maple wood. An experimental modal analysis was employed for this purpose using the impact hammer method. The modal analysis was performed both on the top and back plates, as individual structures, and then after being integrated into the violin body. The modal analysis envisaged the determination of the eigenfrequencies (natural frequencies), the number of spectral components, and the quality factor, as important indicators of the acoustic performances of a musical instrument. A multi-criteria analysis based on the values obtained for these indicators allowed interesting findings concerning the acoustic properties of the selected wood species (hornbeam, willow, ash, bird-eye maple, walnut, and poplar). Same as curly maple, they all have special aesthetics, but only hornbeam, willow, and ash wood proved to have acoustic potential as well.

2011 ◽  
Vol 138-139 ◽  
pp. 395-398
Author(s):  
Li Jun Wang ◽  
Zhi Yang Pan

Fan is used for pneumatic conveying grain in the 4ZTL-1800 combine harvester threshing prior to cutting. In order to decrease power consume of it, the experimental modal analysis of fan was done by using hammer-hitting pulse-inspirit method. The natural frequencies of fan vibration is obtained, which is contrasted with inspirit frequency of fan, then resonance vibration of fan is found and its frequency is at 125Hz, which verifies the result of the experimental modal analysis.The results are beneficial to decrease power consume of fan.


Author(s):  
Lawrence Virgin ◽  
David Holland

It is relatively well known that axial loads tend to influence lateral stiffness and hence natural frequencies of slender structural components. Tensile forces tend to increase the lateral stiffness and compressive forces tend to reduce lateral stiffness, bringing with it the possibility of buckling. In many practical situations this is a negligible effect. But for very slender structures it can be important, including the effect of self-weight. This paper will focus attention on a form of double cantilever beam system, i.e., two cantilevers sharing a common hub. A differential axial load can be applied to this system via orientation in a gravitational field. We shall neglect the effect of gravity when the beams are in their horizontal orientation from a limited theoretical standpoint. It is of course present in the experiments but the cantilevers are much stiffer in one direction than the other, and the beams are clamped with their stiffer resistance in the vertical direction. The focus of the current paper is on the natural frequencies and mode shapes of a two-beam system from an experimental modal analysis perspective.


2019 ◽  
Vol 8 (4) ◽  
pp. 12294-12300

In isolating the ground structure and the above ground structure from seismic loads, a significant device called laminated rubber bearing is usually found in structure. The complexity of the material which is made up from a combination of rubber and steel shim plates in alternate layer, has made it difficult to measure damping value. Damping is a dissipation of energy or energy losses in the vibration of the structure. Measuring the accurate amount of damping is fundamental as damping plays a crucial role in fixing the borderline between stability and instability in structural systems. Therefore, to determine the damping value including dynamic properties in any materials, modal analysis can be used. Hence, the main objective of this research is to determine the Rayleigh’s damping coefficients α and β and to evaluate the performance of the laminated rubber bearing using finite element and experimental modal analysis. Finding shows that, the finite element modal analysis with the addition of Rayleigh’s damping coefficients α and β, shows a good agreement with the experimental modal analysis in term of natural frequencies and mode shapes. Findings show that, the values of natural frequencies reduced when precise Rayleigh’s damping coefficient added in the finite element modal analysis. It can be concluded that both finite element and experimental modal analysis method can be used to estimate the accurate values of damping ratio and to determine the Rayleigh’s damping coefficients α and β as well.


Mechanik ◽  
2017 ◽  
Vol 90 (10) ◽  
pp. 876-878
Author(s):  
Tomasz Wala ◽  
Krzysztof Lis

As part of a comprehensive study of influence of vibrations on the abrasive waterjet process, this article discusses about the identification of modal properties of the waterjet machine including the cutter head. The experimental modal analysis of the main gantry components of the machine construction was carried out, i.e. the carrier beam with the tool support and the cutter head. Determination of the modal properties of the machine allowed the identification of these vibrations, which are directly attributable to the construction of the machine and indicate them in the signal registered during the cutting.


2015 ◽  
Vol 76 (8) ◽  
Author(s):  
A. I. Yusuf ◽  
M. A. Norliyati ◽  
M. A. Yunus ◽  
M. N. Abdul Rani

Elastomeric bearing is a significant device in structures such as in bridges and buildings. It is used to isolate the ground structure (substructure) and the above ground structure (superstructure) from seismic loads such as earthquake load. Understanding the dynamic behavior of the elastomeric bearing in terms of natural frequencies, mode shapes and damping are increasingly important especially in improving the design and the failure limit of the elastomeric bearing. Modal analysis is one of the methods used to determine the dynamic properties of any materials. Hence, the main objective of this research is to determine the dynamic properties of elastomeric bearing components in terms of natural frequencies, mode shapes, and damping via numerical and experimental modal analysis. This method had been successfully performed in investigating the dynamic behavior of rubber and steel shim plate.


Author(s):  
Marjan Molavi ◽  
Ali Bonakdar ◽  
Ion Stiharu

In this paper, a finite element (FE) and scaled-up experimental modal analysis are employed to estimate the natural frequencies of the baker’s yeast cells. It is apparent the mechanical properties of the living cells and particularly the natural frequencies are highly related to the health condition of cells, and therefore a comprehensive analysis is carried out to determine the natural frequencies of individual cells.


2009 ◽  
Vol 69-70 ◽  
pp. 560-564
Author(s):  
Yang Yu Wang ◽  
Shi Ming Ji ◽  
Dong Hui Wen ◽  
Xian Zhang

Vibrations in polishing machinery may affect the manual or automatic controls and reduce the efficiency of the operations to be carried out. In this article, an experimental and numerical analysis on the dynamic characteristic of a gearbox casing in polishing machinery have been carried out. The numerical investigation was achieved with NASTRAN based on a 3D FEM model and the experimental modal analysis for the determination of the natural frequencies and the associated eigenmodes of the gearbox casing with LMS structural vibration test system was performed. The fundamental modal parameters including the first 10-order natural frequencies, damping ratios and mode shapes were estimated and identified. Analytical and experimental results have been compared and discussed. Agreement between measurements and calculations is satisfactory and the results can be used as reliable reference for improving the dynamic behavior of the gearbox casing.


Sign in / Sign up

Export Citation Format

Share Document