scholarly journals Preparation and characterization of polydimethylsiloxane-based paper transparentizing agent and its application in paper coating

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 277-290
Author(s):  
Haoran Ma ◽  
Yujie Gao ◽  
Longgan Tian

A new type of polydimethylsiloxane-based paper transparentizing agent was prepared via a combined method. The performance of the transparentizing agent was investigated systematically by adding and dipping, with use of the surface sizing device of a paper machine. Optimum performance was found at 30% concentration of the transparentizing agent and 30 to 45 °C of dipping temperature. Under the optimal conditions, the transparentizing t agent achieved a rapid penetration in the base paper and filled in the pores of the paper, to be further effectively adsorbed and retained on the fiber surface. The transparency of test paper reached as high as 76±0.97 %, which was 37±1.4% higher than that of the control. However, the addition of transparentizing agent reduced the mechanical strength of paper slightly. The as-prepared transparentizing agent was found to exhibit excellent application stability and biodegradability when applied in the paper machine,When used as plastic film, the transparent paper would lose its strength completely after eight weeks. The resulting transparent paper can be used to develop paper-based film and other related plant based transparent/ translucent paper, which has great potential in replacing plastic products and eliminating white pollution.

TAPPI Journal ◽  
2018 ◽  
Vol 17 (08) ◽  
pp. 437-443
Author(s):  
Lebo Xu ◽  
Jeremy Meyers ◽  
Peter Hart

Coffee edge-wicking testing was conducted on two groups of highly-sized paperboard manufactured at two mills with similar manufacturing processes, but with vastly different local fiber sources. Although the Hercules size test (HST) indicated similar internal size levels between the two types of board, the edge-wicking behavior was noticeably different. Analysis of fiber structure revealed that the board with more edge-wicking had fibers with thicker fiber walls, which kept the fiber lumen more open after pressing and drying on a paper machine. It was demonstrated that liquid penetration through voids between fibers in highly-sized paperboard was limited, because the fiber surface was well protected by the presence of sufficient sizing agent. Nevertheless, freshly exposed fiber walls and lumens at the cut edge of the sheet were not protected by sizing material, which facilitated edge-wicking. The correlation between fiber structure and edge-wicking behavior was highlighted in this work to inspire development of novel sizing strategies that protect the freshly cut edge of the sheet from edge-wicking.


Author(s):  
Raffaele Romano ◽  
Alessandra Aiello ◽  
Lucia De Luca ◽  
Rosario Sica ◽  
Emilio Caprio ◽  
...  
Keyword(s):  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Wang ◽  
Jiawei Liang ◽  
Yonghong Li ◽  
Lingmin Tian ◽  
Yongjun Wei

AbstractXylanases are widely used enzymes in the food, textile, and paper industries. Most efficient xylanases have been identified from lignocellulose-degrading microbiota, such as the microbiota of the cow rumen and the termite hindgut. Xylanase genes from efficient pulp and paper wastewater treatment (PPWT) microbiota have been previously recovered by metagenomics, assigning most of the xylanase genes to the GH10 family. In this study, a total of 40 GH10 family xylanase genes derived from a certain PPWT microbiota were cloned and expressed in Escherichia coli BL21 (DE3). Among these xylanase genes, 14 showed xylanase activity on beechwood substrate. Two of these, PW-xyl9 and PW-xyl37, showed high activities, and were purified to evaluate their xylanase properties. Values of optimal pH and temperature for PW-xyl9 were pH 7 and 60 ℃, respectively, while those for PW-xyl37 were pH 7 and 55 ℃, respectively; their specific xylanase activities under optimal conditions were 470.1 U/mg protein and 113.7 U/mg protein, respectively. Furthermore, the Km values of PW-xyl9 and PW-xyl37 were determined as 8.02 and 18.8 g/L, respectively. The characterization of these two xylanases paves the way for potential application in future pulp and paper production and other industries, indicating that PPWT microbiota has been an undiscovered reservoir of efficient lignocellulase genes. This study demonstrates that a metagenomic approach has the potential to screen efficient xylanases of uncultured microorganisms from lignocellulose-degrading microbiota. In a similar way, other efficient lignocellulase genes might be identified from PPWT treatment microbiota in the future.


2014 ◽  
Vol 46 (4) ◽  
pp. 1148-1171 ◽  
Author(s):  
Ji Hwan Cha

In this paper some important properties of the generalized Pólya process are derived and their applications are discussed. The generalized Pólya process is defined based on the stochastic intensity. By interpreting the defined stochastic intensity of the generalized Pólya process, the restarting property of the process is discussed. Based on the restarting property of the process, the joint distribution of the number of events is derived and the conditional joint distribution of the arrival times is also obtained. In addition, some properties of the compound process defined for the generalized Pólya process are derived. Furthermore, a new type of repair is defined based on the process and its application to the area of reliability is discussed. Several examples illustrating the applications of the obtained properties to various areas are suggested.


1984 ◽  
Vol 195 (1-2) ◽  
pp. 186-189 ◽  
Author(s):  
Ralf R. Mendel ◽  
Roger J. Buchanan ◽  
John L. Wray

2011 ◽  
Vol 102 (11) ◽  
pp. 6536-6540 ◽  
Author(s):  
Q.H. Xu ◽  
Y.P. Wang ◽  
M.H. Qin ◽  
Y.J. Fu ◽  
Z.Q. Li ◽  
...  

1992 ◽  
Vol 288 (2) ◽  
pp. 475-482 ◽  
Author(s):  
I Ishii-Karakasa ◽  
H Iwase ◽  
K Hotta ◽  
Y Tanaka ◽  
S Omura

For the purification of a new type of endo-alpha-N-acetylgalactosaminidase from the culture medium of Streptomyces sp. OH-11242 (endo-GalNAc-ase-S) [Iwase, Ishii, Ishihara, Tanaka, Omura & Hotta (1988) Biochem. Biophys. Res. Commun. 151, 422-428], a method for assaying enzyme activity was established. Using purified pig gastric mucus glycoprotein (PGM) as the substrate, oligosaccharides liberated from PGM were pyridylaminated, and the reducing terminal sugars of oligosaccharides larger than Gal beta 1-3GalNAc were analysed by h.p.1.c. The crude enzyme of endo-GalNAc-ase-S was prepared as an 80% (w/v) ammonium sulphate precipitate from the concentrated culture medium. The enzyme was partially purified by gel chromatofocusing and subsequent DEAE-Toyopearl chromatography. Endo-enzyme activity eluted around pI 4.8 on a gel chromatofocusing column and eluted with 0.19-0.25 M-NaCl on a DEAE-Toyopearl column. In the enzyme fraction obtained, no exo-glycosidases or proteases could be detected. The molecular mass of the enzyme was estimated as 105 kDa by gel filtration, and the optimum pH was 5.5. Endo-GalNAc-ase-S hydrolysed the O-glycosidic linkage between GalNAc and Ser (Thr) in 3H-labelled and unlabelled asialofetuin, liberating both the disaccharide (Gal beta 1-3GalNAc) and the tetrasaccharide [Gal beta 1-3 (Gal beta 1-4GlcNAc beta 1-6)GalNAc]. When endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. (endo-GalNac-ase-A) was incubated with 3H-labelled and unlabelled asialofetuin, only the disaccharide (Gal beta 1-3GalNAc) was liberated.


2012 ◽  
Vol 262 ◽  
pp. 405-409
Author(s):  
Yang Liu ◽  
Shan Shan Li ◽  
Xin Yan Yang ◽  
Chong Xing Huang

A new-type foam composites were fabricated by baking method from a mixture of cassava starch. A central composite design was constructed using the software Statistics Analysis System 9.0 to evaluate the static compression stress of foamed material. The optimum dosages of adhesive, foaming agent, catalyst were 2.0g, 6.0g, 2.4g, respectively; reaction temperature 65°C; reaction time 16 hour.


Sign in / Sign up

Export Citation Format

Share Document