Down-regulation of activated T and Th17/IL-22 producing CD4+ T cells with treatment in Kawasaki disease

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Jingying Yang ◽  
Guanfang Liu ◽  
Maohua Zhou ◽  
Juan Cheng ◽  
Erxia Shen ◽  
...  
2016 ◽  
Vol 101 (2) ◽  
pp. 589-597 ◽  
Author(s):  
Tanja Schoknecht ◽  
Dorothee Schwinge ◽  
Stephanie Stein ◽  
Christina Weiler-Normann ◽  
Marcial Sebode ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1182-1182
Author(s):  
Eva M Wagner ◽  
Aline N Lay ◽  
Sina Wenzel ◽  
Timo Schmitt ◽  
Julia Hemmerling ◽  
...  

Abstract The human CD52 molecule is the target of the monoclonal antibody Alemtuzumab, which is used for treating patients with chemo-refractory chronic lymphocytic leukemia as well as for T cell depletion (TCD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT). The molecule is expressed on the surface of lymphocytes, dendritic cells and to a lesser extent on blood-derived monocytes. Previously, investigators have demonstrated that the surface expression of CD52 on T cells is down-regulated after in vitro incubation with Alemtuzumab. By treating purified human CD4 T cells over 4 hours with 10 μg/mL Alemtuzumab in medium supplemented with 10% human AB serum in vitro, we observed a strong decrease of CD52 expression by flow cytometry with a maximum 3–7 days after incubation. The CD52 down-regulation was also found at weaker intensity on CD8 T cells. From previous studies in chronic lymphocytic leukemia patients, it is known that Alemtuzumab treatment also leads to a down-regulation of CD52 on T cells in vivo. However, similar experiments have not been performed in allogeneic HSCT patients receiving Alemtuzumab in vivo for T cell depletion. We therefore analyzed the expression of CD52 on human peripheral blood mononuclear cells isolated at repeated time points from 22 allogeneic HSCT patients after reduced-intensity conditioning with fludarabine and melphalan and in vivo T cell depletion with Alemtuzumab (100 mg). Half of the patients received prophylactic CD8-depleted donor lymphocyte infusions (DLI) to promote immune reconstitution. By flow cytometry, we observed that the CD52 expression on monocytes, B cells, and natural killer cells remained unaltered after transplantation and was not influenced by the application of DLI. In contrast, the majority of CD4 T cells were CD52-negative (median, 72%) after transplantation and they remained CD52-negative in patients who did not receive DLI throughout the first year after HSCT. The permanent lack of CD52 expression could not be explained by a continuous effect of Alemtuzumab, because earlier studies have shown that the antibody is not present in active plasma concentrations beyond day +60 after HSCT. In contrast, patients receiving CD8-depleted DLI demonstrated a significant increase in the proportion of CD52-positive CD4 T cells. In three of our patients (DLI: n=2, non-DLI: n=1) we analyzed the donor chimerism of CD52-positive and CD52-negative CD4 T cells sorted with high purity by flow cytometry. Three months after HSCT (before DLI), the proportion of donor T cells was clearly higher among the CD52-negative compared to the small proportion of CD52-positive cells in all patients (44% vs. 10%, 83% vs. 0%, and 100% vs. 40%). In the patient who did not receive DLI, the donor T cell chimerism remained mixed in the CD52-negative and CD52-positive fractions on days 200 (CD52-negative: 95%; CD52-positive: 15%) and 350 (CD52-negative: 92%; CD52-positive: 65%). In contrast, the two patients receiving CD8-depleted DLI showed a strong increase in the proportion of CD52-positive CD4 T cells that were of complete donor origin. Altogether, CD52 is permanently down-regulated in reconstituting CD4 T cells following HSCT with an Alemtuzumab-based TCD regimen unless DLI are applied. Our data support the idea of an active mechanism for CD52 down-regulation in CD4 T cells that is not related to B cells and natural killer cells and that appears to differently affect donor and host T cells, respectively.


PLoS ONE ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. e8959 ◽  
Author(s):  
Syed R. Gilani ◽  
Louis J. Vuga ◽  
Kathleen O. Lindell ◽  
Kevin F. Gibson ◽  
Jianmin Xue ◽  
...  

2007 ◽  
Vol 108 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Mi-La Cho ◽  
Ji Hyeon Ju ◽  
Kyoung-Woon Kim ◽  
Young-Mee Moon ◽  
Seon-Yeong Lee ◽  
...  

2007 ◽  
Vol 178 (3) ◽  
pp. 1645-1653 ◽  
Author(s):  
Carlos S. Subauste ◽  
Angela Subauste ◽  
Matthew Wessendarp
Keyword(s):  
T Cells ◽  

Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 4832-4838 ◽  
Author(s):  
Mamoru Fujiwara ◽  
Masafumi Takiguchi

AbstractBoth CD4+ T cells and macrophages are major reservoirs of HIV-1. Previous study showed that HIV-1–specific cytolytic T lymphocytes (CTLs) hardly recognize HIV-1–infected CD4+ T cells because of Nef-mediated HLA class I down-regulation, suggesting that HIV-1 escapes from HIV-1–specific CTLs and continues to replicate in HIV-1–infected donors. On the other hand, the CTL recognition of HIV-1–infected macrophages and the effect of Nef-mediated HLA class I down-regulation on this recognition still remain unclear. We show a strong HIV-1 antigen presentation by HIV-1–infected macrophages. HIV-1–specific CTLs had strong abilities to suppress HIV-1R5 virus replication in HIV-1–infected macrophages and to kill HIV-1R5–infected macrophages. Nef-mediated HLA class I down-regulation minimally influenced the recognition of HIV-1–infected macrophages by HIV-1–specific CTLs. In addition, HIV-1–infected macrophages had a stronger ability to stimulate the proliferation of HIV-1–specific CTLs than HIV-1–infected CD4+ T cells. Thus, the effect of Nef-mediated HLA class I down-regulation was less critical with respect to the recognition by HIV-1–specific CTLs of HIV-infected macrophages than that of HIV-1–infected CD4+ T cells. These findings support the idea that the strong HIV-1 antigen presentation by HIV-1–infected macrophages is one of the mechanisms mediating effective induction of HIV-1–specific CTLs in the acute and early chronic phases of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document