scholarly journals IMAGE QUALITY ANALYSIS OF AN INDUSTRIAL INSTANT NON-SCANNING TOMOGRAPHY SYSTEM WITH DIFFERENT COLLIMATORS

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Alexandre França Velo ◽  
Alexandre Gimenes Alvarez ◽  
Margarida Mizue Hamada ◽  
Carlos Henrique De Mesquita

The greatest impact of the computed tomography (CT) applications currently occurs in medicine. In industry there is much interest of using CT in order to know the interior of: (i) industrial objects; (ii) machines and their means of production. The purpose of this tomography is to: (a) control the quality of the final product and (b) optimize production and analyze the quality of the means of production. An instant non-scanning tomography system is being developed at the IPEN. This tomography comprised different collimators was simulated with Monte Carlo using the MCNP4C. The image quality was evaluated with Matlab® 2013b analyzing the contrast to noise (CNR), root mean square ratio (RMSE), signal to noise ratio (SNR) and the spatial resolution by the Modulation Transfer Function (MTF(f)), to identify which collimator fits better to the tomography in development. It was simulated three situations; (i) with no collimator; (ii) ø 25x 50 mm2 cylindrical collimator with a septum of ø5.0 x 50 mm2; (iii) ø25 x 50 mm2 cylindrical collimator with a slit septum of 24 x 5.0 x 50 mm3. RMSE values for no collimator presented better results. CNR showed that no collimator and slit collimator reaches the same CNR values, but no collimator decreases more than the slit collimator as the number of iteration rises. The hole collimator reaches a higher CNR value, however decreases more than the others. The spatial resolution with no collimator and slit collimator were around 31.9 mm, and for the hole collimator was around 20 mm

2021 ◽  
Vol 12 (3) ◽  
pp. 359
Author(s):  
Muhammad Irsal ◽  
Muhammad Rival Alfajri ◽  
Vincentius Deva Ananta ◽  
Khairil Anwar ◽  
Sriyatun Sriyatun

<p>In producing a good radiographic image, an optimization method is needed. This study was conducted to seek optimization of the radiographic examination of the manus ossa with objective and subjective image quality analysis. The research method is quantitative experimental, using a variety of exposure factors: 40kV 4 mAs, 40kV 10 mAs, 46 kV 5 mAs, 53 kV 2,5 mAs, 61kV 1,25 mAs. Then an objective quality analysis is carried out by measuring the pixels value, Signal to Noise Ratio (SNR), and the Exposure Index (EI) value as an indicator of exposure. For subjective image analysis with the assessment of image anatomy criteria using the method Visual Grading Analysis (VGA), then the test was carried out Wilcoxon to determine the relationship of respondents to VGA assessment. The results of the study obtained that the optimization method of the examination manus ossa at the exposure factor of 46 kV 5 mAs with the results of an objective image quality analysis of the range of pixel value  183,7 - 3, the SNR range of 12,2-1,77 while the subjective image quality analysis of the results VGA all images on a variety of exposure factors can be used in establishing a diagnosis. For the exposure indicator with the lowest EI at an exposure factor of 46 kV 5 mAs. The results of the Wilcoxon p-value&gt;0,05 so that there was no difference in the VGA value by 2 radiographers, therefore all image results on variations in exposure factors could be used in the radiographic examination of the ossa manus.<em></em></p>


2016 ◽  
Vol 12 (2) ◽  
pp. 161-168 ◽  
Author(s):  
D. R. Ningtias ◽  
S. Suryono ◽  
S. Susilo

Penelitian yang telah dilakukan adalah pembuatan dan penghitungan kualitas citra digital menggunakan program Modulation Transfer Function (MTF) pada sistem Computed Radiography (CR) untuk kegiatan Quality Control (QC). MTF dapat digunakan untuk menganalisis resolusi spasial citra digital secara akurat. Pada penelitian ini menggunakan phantom yang terbuat dari tembaga berukuran 15x15 cm dengan ketebalan 1 mm. Phantom dieksposi dengan variasi tegangan 50 kV, 60 kV, 70 kV dan 81 kV dan masing-masing dilakukan variasi arus. Data yang diperoleh berupa file citra digital radiografi format DICOM yang kemudian dilakukan analisis kualitas citranya menggunakan PC diluar sistem CR dengan metode MTF. Metode ini sangat efisien dalam melakukan QC resolusi spasial secara kuantitatif sehingga dapat digunakan untuk menilai kualitas pesawat CR. Hasil pengukuran menunjukkan bahwa semakin tinggi tegangan yang digunakan, maka kualitas citra semakin baik dengan arus optimal pada rentang 4-8 mAs dengan rata-rata nilai resolusi spasial 7,26 lp/mm.The research was analyzing of digital image quality by using Modulation Transfer Function (MTF) on Computed Radiography (CR) system for Quality Control (QC). MTF can be used for analyzing digital image spatial resolution accurately. The research used phantom that made of 15x15 cm2 copper and 1 mm thickness. The phantom was expounded with voltage variations by 50 kV, 60 kV, 70 kV dan 81 kV and each of them have been taken by variations of the current. The the image quality of data obtained in the form of radiography digital image files with DICOM format were then analyzed using PC out of CR system with methode of MTF. This methode is really efficient for QC spatial resolution quantitatively and so it can be used for assesing the quality of CR. The measurement results showed that the higher the voltage, the better image quality with optimal current was on the range between 4-8 mAs with the average value of MTF 7,26 lp/mm.


Author(s):  
Y. Wang ◽  
X. Hu ◽  
X. Yang ◽  
G. Xie

The image quality of the surveying camera will affect the stereoscopic positioning accuracy of the remote sensing satellite. The key factors closely related to the image quality are Modulation Transfer Function(MTF),Signal to Noise Ratio(SNR) and Quantization Bits(QB). In “Mapping Satellite-1” image as the background, research the effect of positioning precision about the image quality in no ground controlled conditions, and evaluate the quantitative relationship with the positioning precision. At last verify the validity of the experimental results by simulating three factors of the degraded data on orbit, and counting the number of matching points, the mismatch rate, and the matching residuals of the degraded data. The reason for the variety of the positioning precision was analyzed.


Author(s):  
P.-C. Lim ◽  
T. Kim ◽  
S.-I. Na ◽  
K.-D. Lee ◽  
H.-Y. Ahn ◽  
...  

<p><strong>Abstract.</strong> UAVs (Unmanned aerial Vehicles) can acquire images easily without large cost. For this reason, use of UAV is spreading to diverse fields such as orthoimages and DEM/DSM production. The spatial resolution of images is usually expressed as a GSD (Ground Sampling Distance). The GSD from UAV has higher performance than other platforms such as satellites and aircraft because it shoot at low altitude. However, blurring and noise may occur on UAV images due to the weather and the stability of UAV. However, since the GSD from UAV cannot sufficiently meet the spatial resolving power of the actual image system, a criterion for determining the spatial resolution of image is needed. Therefore we emphasize that the quality of the image needs to be analysed. Actual performance indicators such as GRD (Ground Resolved Distance) and NIIRS (National Image Interpretability Rating Scales), which can be measured through image analysis, are representative examples of image quality interpretation. It is possible to extract NIIRS form image quality related parameters such as MTF (Modulation Transfer Function), RER (Relative Edge Response) and SNR (Signal to Noise Ratio). In this paper, we aim to apply the Edge analysis method to UAV and to analyse the result. The analysis result showed that while GSD and NIIRS were highly dependent to imaging altitude, GRD and image sharpness showed optimal altitude ranges. The exact optimal range varied between images taken at different weather conditions. While we need a further study, this may indicate that edge analysis may provide an optimal operational altitude range suitable for the sensors.</p>


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. P23-P31 ◽  
Author(s):  
A. J. Berkhout ◽  
G. Blacquière ◽  
D. J. Verschuur

In traditional seismic surveys, the firing time between shots is such that the shot records do not interfere in time. However, in the concept of blended acquisition, the records do overlap, allowing denser source sampling and wider azimuths in an economic way. A denser shot sampling and wider azimuths make that each subsurface gridpoint is illuminated from a larger number of angles and will therefore improve the image quality in terms of signal-to-noise ratio and spatial resolution. We show that — even with very simple blending parameters like time delays — the incident wavefield at a specific subsurface gridpoint represents a dispersed time series with a “complex code”. For shot-record migration purposes, this time series must have a stable inverse. In a next step, we show that the illumination can be further improved by utilizing the surface-related multiples. This means that these multiples can be exploited to improve the incident wavefield by filling angle gaps in the illumination and/or by extending the range of angles. In this way, the energy contained in the multiples now contributes to the image, rather than decreasing its quality. One remarkable consequence of this property is that the benefits to be obtained from the improved illumination depend on the detector locations in acquisition geometries as well. We show how to quantify the contribution of the blended surface multiples to the illuminating wavefield for a blended source configuration. Results confirm that the combination of blending and multiple scattering increases the illumination energy and, therefore, will improve the quality of shot-record migration results beyond today’s capability.


2016 ◽  
Vol 2016 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Dietmar Wueller ◽  
Ulla Bøgvad Kejser

2020 ◽  
Vol 64 (2) ◽  
pp. 20503-1-20503-5
Author(s):  
Faiz Wali ◽  
Shenghao Wang ◽  
Ji Li ◽  
Jianheng Huang ◽  
Yaohu Lei ◽  
...  

Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


Sign in / Sign up

Export Citation Format

Share Document