scholarly journals Beta thalassemia and role of herbals and hematopoietic stem cells in its remedy

Author(s):  
Pooja Rai ◽  
Kamal Uddin Zaidi ◽  
Vijay Thawani

Genetic disorders caused by mutations in the β-globin gene are widely known as the human β-hemoglobinopathies, in which there is β-thalassemia. In recent years, effort has been made to identify the natural inducers and drug treatments which can increase the synthesis of fetal hemoglobin and promote the expression of fetal γ-globin gene. This review aims to reveal the novel screening platforms for identifying potential herbal inducers with high efficiency and accuracy and to describe the hematopoietic stem cells remedies to provide perspectives in fetal hemoglobin reactivation for treating β-thalassemia.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-23-SCI-23
Author(s):  
Giuliana Ferrari

Beta-thalassemia and sickle cell disease (SCD) are congenital anemias caused by mutations in the beta-globin gene, resulting in either reduced/absent production of globin chains or abnormal hemoglobin structure. At present, the definitive cure is represented by allogeneic hematopoietic stem cell transplantation, with a probability to find a well-matched donor of <25%. Experimental gene therapy for hemoglobinopathies is based on transplantation of autologous hematopoietic stem cells genetically modified to express therapeutic hemoglobin levels. Approaches to genetically modify HSCs for treatment of hemoglobinopathies include: 1) the addition of globin genes by lentiviral vectors and 2) gene editing by nucleases to reactivate fetal hemoglobin either through inhibition of repressors or by reproducing mutations associated with high fetal hemoglobin levels. The outcomes of early clinical trials are showing the safety and potential efficacy, as well as the hurdles still limiting a general application.Current challenges and improved strategies will be presented and discussed. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Plerixafor


2019 ◽  
Vol 3 (21) ◽  
pp. 3379-3392 ◽  
Author(s):  
Jean-Yves Métais ◽  
Phillip A. Doerfler ◽  
Thiyagaraj Mayuranathan ◽  
Daniel E. Bauer ◽  
Stephanie C. Fowler ◽  
...  

Key Points Cas9 editing of the γ-globin gene promoters in hematopoietic stem cells (HSCs) increases red cell HbF by ≤40%. No deleterious effects on hematopoiesis or off-target mutations were detected 16 weeks after xenotransplantation of edited HSCs.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hala Gabr ◽  
Mona Kamal El Ghamrawy ◽  
Abdulrahman H. Almaeen ◽  
Ahmed Samir Abdelhafiz ◽  
Aya Osama Saad Hassan ◽  
...  

Abstract Background β-Thalassemias represent a group of genetic disorders caused by human hemoglobin beta (HBB) gene mutations. The radical curative approach is to correct the mutations causing the disease. CRISPR-CAS9 is a novel gene-editing technology that can be used auspiciously for the treatment of these disorders. The study aimed to investigate the utility of CRISPR-CAS9 for gene modification of hematopoietic stem cells in β-thalassemia with IVS-1-110 mutation. Methods and results We successfully isolated CD34+ cells from peripheral blood of β-thalassemia patients with IVS-1-110 mutation. The cells were transfected with Cas9 endonuclease together with guide RNA to create double-strand breaks and knock out the mutation. The mutation-corrected CD34+ cells were subjected to erythroid differentiation by culturing in complete media containing erythropoietin. Conclusion CRISPR/Cas-9 is an effective tool for gene therapy that will broaden the spectrum of therapy and potentially improve the outcomes of β-thalassemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parin Rattananon ◽  
Usanarat Anurathapan ◽  
Kanit Bhukhai ◽  
Suradej Hongeng

β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 341-341
Author(s):  
Silvia Bakovic ◽  
Patricia M. Rosten ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract The ultimate promise of gene therapy for patients with hemoglobinopathies depends on the development of safe strategies for achieving 2 goals. One is to obtain efficient and permanent correction of the gene defect in autologous hematopoietic stem cells (HSCs). The second is to develop methods for the pre-transplant amplification of transduced HSCs to high levels to ensure that they will outcompete the large residual endogenous HSC population remaining in non-myeloablated hosts (e.g. previous experiments have shown that a minimum of ~5 × 106 normal adult mouse bone marrow (BM) cells (~500 HSC) is required to achieve a level of chimerism of 20% in mice given 200 cGy). The ability of HOXB4 to promote HSC self-renewal divisions in short term culture prior to their use as transplants offers an attractive approach to achieve this latter goal. As a first test we transduced day-4 5FU BM cells from normal mice with a MSCV-HOXB4-IRES-GFP or control MSCV-IRES-GFP virus and then transplanted the cells either before or after 7 days maintenance in vitro into normal recipients given 250 cGy. Mice transplanted with an estimated 50 HSCs immediately after transduction with either virus reached equivalent low levels of chimerism (~10%) showing that HOXB4 does not impart an in vivo selective growth advantage under sublethal conditions. After ex vivo culture, the GFP transduced cells yielded an even lower level of chimerism (~5%), in contrast recipients of cultured HOXB4-transduced cells attained much higher stable levels of lympho-myeloid chimerism (~50%), indicative of a marked expansion of the HSCs pre-transplant and their retention of robust competitive repopulating potential. We then applied this approach to a gene therapy model of severe β-thalassemia in mice bearing a homozygous deletion of the β-major globin gene (β-MDD). To model a transplant of genetically corrected cells, BM cells were harvested from day-4 5FU pre-treated congenic wild-type donors and transduced with the HOXB4 virus. Cells were then cultured for 10 days and the progeny of 200K starting cells transplanted into 3 β-MDD and 4 normal recipients given 200 cGy. Transplantation of 500K freshly harvested day-4 5FU BM cells into 4 similarly conditioned control mice failed to produce significant chimerism (1–3% at 5 months). In contrast, all 4 control recipients of ex vivo expanded HOXB4-transduced cells exhibited significant stable chimerism (21±6% at 5 months). Similar levels of chimerism were also achieved in all 3 β-MDD recipients (18–76%), one of which was sustained at 34% at 5 months (52% in the RBCs). This was associated with substantial improvement in the Hct (36% vs 23% in untreated β-MDD), Hb (10.5 vs 5 g/dl) and RBC morphology. Southern blot analyses performed on 53 individual in vitro-expanded myeloid colonies generated from FACS-selected GFP+ marrow cells from this mouse 2 months post-transplant showed 19 distinct integration patterns indicating reconstitution from polyclonal expanded HSCs. This conclusion was further confirmed by proviral integration site analyses, which identified 13 separate integration sites from 9 colonies that had unique proviral patterns. These data demonstrate the curative potential of ex vivo expanded HSCs in a preclinical model of β-thalassemia treated with non-myeloablative conditioning. They also underscore the potential of HOXB4 as a potent tool to achieve the HSC expansions required.


2019 ◽  
Vol 12 ◽  
pp. 175-183 ◽  
Author(s):  
Christopher T. Lux ◽  
Sowmya Pattabhi ◽  
Mason Berger ◽  
Cynthia Nourigat ◽  
David A. Flowers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document