scholarly journals Improving Indian meteorological department method for 24- hourly rainfall downscaling to shorter durations for IDF modelling

2021 ◽  
Vol 5 (2) ◽  
pp. 72-82
Author(s):  
Ify L Nwaogazie ◽  
Masi G Sam ◽  
Chiedozie Ikebude

The development of Intensity-Duration-Frequency (IDF) models for storm drain design and related flood mitigation structures requires rainfall amount and corresponding duration records. To achieve this purpose, three short duration downscaling methods from 24-hourly rainfall amount data were selected for improvement, namely: IMD, AIMD and MCIMD, with the CAMS method used as the experiment control. Three types of general PDF-IDF models (GEVT-1, LPT-3 and ND) were developed based on the downscaling methods yielding goodness of fit (R2) with very high correlation of 0.995–0.999 and model accuracy with mean square error (MSE) of 4.123–7.85. The PDF-IDF models predicted intensities plotted against durations for different return periods of 2, 5, 10, 25, 50 and 100 years, showed visual differences in the predictive performance of the intensities derived from the downscaling methods. Kruskal-Wallis non-parametric test of significance at 5% level carried out showed that no-significant difference exist for 15-60 minutes duration, while the difference was significant for durations between 90–300 minutes. The LPT-3 based on MCIMD yielded higher improved performance in prediction of intensities relative to the IMD. The level of improvement ranges from 35.17 to 52.26% and 25.0 to 39.89%; while that of AIMD ranges from 10.97 to 20.87% and 3.33 to 12.53% for 10 and 100 year return periods, respectively. The use of the IMD downscaling method with the LPT-3 PDF-IDF model for design purposes will be justified if modified with some percentage improvement or adjustment factor.

2004 ◽  
Vol 100 (6) ◽  
pp. 1405-1410 ◽  
Author(s):  
Alexandre Ouattara ◽  
Michaëla Niculescu ◽  
Sarra Ghazouani ◽  
Ario Babolian ◽  
Marc Landi ◽  
...  

Background The Cardiac Anesthesia Risk Evaluation (CARE) score, a simple Canadian classification for predicting outcome after cardiac surgery, was evaluated in 556 consecutive patients in Paris, France. The authors compared its performance to those of two multifactorial risk indexes (European System for Cardiac Operative Risk Evaluation [EuroSCORE] and Tu score) and tested its variability between groups of physicians (anesthesiologists, surgeons, and cardiologists). Methods Each patient was simultaneously assessed using the three scores by an attending anesthesiologist in the immediate preoperative period. In a blinded study, the CARE score category was also determined by a cardiologist the day before surgery, by a surgeon in the operating room, and by a second anesthesiologist at arrival in intensive care unit. Calibration and discrimination for predicting outcomes were assessed by goodness-of-fit test and area under the receiver operating characteristic curve, respectively. The level of agreement of the CARE scoring between the three physicians was then assessed. Results The calibration analysis revealed no significant difference between expected and observed outcomes for the three classifications. The areas under the receiver operating characteristic curves for mortality were 0.77 with the CARE score, 0.78 with the EuroSCORE, and 0.73 with the Tu score (not significant). The agreement rate of the CARE scoring between two anesthesiologists, between anesthesiologists and surgeons, and between anesthesiologists and cardiologists were 90%, 83%, and 77%, respectively. Conclusions Despite its simplicity, the CARE score predicts mortality and major morbidity as well the EuroSCORE. In addition, it remains devoid of significant variability when used by groups of physicians of different specialties.


2016 ◽  
Author(s):  
Reza Ghazavi ◽  
Ali Moafi Rabori ◽  
Mohsen Ahadnejad Reveshty

Abstract. Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormwater Management Model (SWMM). The accuracy of model simulations was confirmed based on the results of calibration. Design hyetographs in different return periods show that estimated rainfall depth via Sherman method are greater than other method except for 2-year return period. According to Ghahreman and Abkhezr method, decrease of runoff peak was 30, 39, 41 and 42 percent for 5-10-20 and 50-year return periods respectively, while runoff peak for 2-year return period was increased by 20 percent.


Author(s):  
Ify L. Nwaogazie ◽  
M. G. Sam ◽  
A. O. David

The design of structures for flood mitigation depends on the adequate estimation of rainfall intensity over a given catchment which is achieved by the rainfall intensity duration frequency modelling. In this study, an extensive comparative analyses were carried out on the predictive performance of three PDF – IDF model types, namely: Gumbel Extreme Value Type 1 (GEVT – 1), Log-Pearson Type 3 (LPT – 3) and Normal Distribution (ND) in 14 selected cities in Southern Nigeria. This is to rank the order of best performance. The principle of general model development was adopted in which rainfall intensities at different durations and specified return periods were used as input data set. This is not same as return period specific model that involves rainfall intensities for various durations and a given return period. The predicted rainfall intensity values with the PDF – IDF model types indicate high goodness of fit (R2) and Mean Squared Errors (MSE) ranging from: (a) R2 = 0.875 – 0.992; MSE = 33.17 – 224.6 for GEVT – 1; (b) R2 = 0.849 – 0.990; MSE = 65.34 – 405.5 for LPT – 3 and (c) R2 = 0.839 – 0.992; MSE = 29.23 – 200.2 for ND. The comparative analysis of all the 42 general models (14 locations versus 3 model types) considered showed that the order of best performance is LPT – 3 1st, GEVT - 1 2nd and ND 3rd for each return period (10, 50 and 100 years). The Kruskal Wallis test of significance indicates that no significant difference exists in the predictive performance of the three General models across the board. This may be due to the fact that the fourteen locations of the study area are bordering with the Atlantic Ocean and seems to have similar climatology. These developed General models are recommended for the computation of intensities in the fourteen locations for the design of flood control structures; and the order of preference should be LPT – 3 > GEVT – 1 > ND.


2012 ◽  
Author(s):  
Fadhilah Y. ◽  
Zalina Md. ◽  
Nguyen V–T–V. ◽  
Suhaila S. ◽  
Zulkifli Y.

Dalam mengenal pasti model yang terbaik untuk mewakili taburan jumlah hujan bagi data selang masa satu jam di 12 stesen di Wilayah Persekutuan empat taburan digunakan iaitu Taburan Eksponen, Gamma, Weibull dan Gabungan Eksponen. Parameter–parameter dianggar menggunakan kaedah kebolehjadian maksimum. Model yang terbaik dipilih berdasarkan nilai minimum yang diperolehi daripada ujian–ujian kebagusan penyuaian yang digunakan dalam kajian ini. Ujian ini dipertahankan lagi dengan plot kebarangkalian dilampaui. Taburan Gabungan Eksponen di dapati paling baik untuk mewakili taburan jumlah hujan dalam selang masa satu jam. Daripada anggaran parameter bagi taburan Gabungan Eksponen ini, boleh diterjemah bahawa jumlah hujan tertinggi yang direkodkan diperolehi daripada hujan yang dikategorikan sebagai hujan lebat, walaupun hujan renyai–renyai berlaku lebih kerap. Kata kunci: Jumlah hujan dalam selang masa sejam, ujian kebagusan penyuaian, kebolehjadian maksimum In determining the best–fit model for the hourly rainfall amounts for the twelve stations in the Wilayah Persekutuan, four distributions namely, the Exponential, Gamma, Weibull and Mixed–Exponential were used. Parameters for each distribution were estimated using the maximum likelihood method. The best–fit model was chosen based upon the minimum error produced by the goodness–offit tests used in this study. The tests were justified further by the exceedance probability plot. The Mixed–Exponential was found to be the most appropriate distribution in describing the hourly rainfall amounts. From the parameter estimates for the Mixed–Exponential distribution, it could be implied that most of the hourly rainfall amount recorded were received from the heavy rainfall even though there was a high occurrences of light rainfall. Key words: Hourly rainfall amount, goodness-of-fit test, exceedance probability, maximum likelihood


2017 ◽  
Vol 124 (1-4) ◽  
pp. 11-23
Author(s):  
Richard Bernatz

Gauge-based and multi-sensor precipitation estimation (MPE) data are compared on hourly, daily, monthly and event time scales at site locations over a 12-year period. Gauge data is collected at 16 sites within a 950 km2 portion of the Upper Iowa River in northeast Iowa. Average relative MPE bias is positive for all but the event time scale, and has a magnitude of less than 0.10 for all scales. Gauge and MPE average correlation coefficients range from 0.73 on the hourly scale to 0.92 on the event and monthly scales. The MPE relative bias standard deviation decreases from 1.70 mm on the hourly scale to 0.27 mm on the monthly scale. Decomposition of hourly bias reveals that the false positive portion is the most significant component. Seventy percent of MPE accumulation have a relative bias of 0.5 or less when hourly accumulations are 7 mm or greater. Pearson product-moment coefficient analysis reveals strong similarities in spatial correlations as a function of site separation. Rainfall time series for the basin are constructed from the two data sources and used as input to a Blocked Topmodel rainfall runoff scheme to provide another means of comparison on a basin-wide spatial scale. Five goodness-of-fit measures are used for quantifying the viability of simulated flows. No statistically significant difference in annual means using the difference sources is found for any of the measures.


2008 ◽  
Vol 5 (6) ◽  
pp. 3419-3447 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e. TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


2009 ◽  
Vol 13 (2) ◽  
pp. 205-216 ◽  
Author(s):  
A. Viglione ◽  
G. Blöschl

Abstract. While the correspondence of rainfall return period TP and flood return period TQ is at the heart of the design storm procedure, their relationship is still poorly understood. The purpose of this paper is to shed light on the controls on this relationship. To better understand the interplay of the controlling factors we assume a simplified world with block rainfall, constant runoff coefficient and linear catchment response. We use an analytical derived flood frequency approach in which, following design practise, TP is defined as the return period of the intensity-duration-frequency (IDF) curve given storm duration and depth. Results suggest that the main control on the mapping of rainfall to flood return periods is the ratio of storm duration and catchment response time, as would be expected. In the simple world assumed in this work, TQ is always smaller or equal than TP of the associated storm, i.e., TQ/TP≤1. This is because of the difference in the selectiveness of the rectangular filters used to construct the IDF curves and the unit hydrograph (UH) together with the fact that different rectangular filters are used when evaluating the storm return periods. The critical storm duration that maximises TQ/TP is, in descending importance, a function of the catchment response time and the distribution of storm duration, while the maximum value of TQ/TP is mainly a function of the coefficient of variation of storm duration. The study provides the basis for future analyses, where more complex cases will be examined.


Crisis ◽  
2013 ◽  
Vol 34 (6) ◽  
pp. 434-437 ◽  
Author(s):  
Donald W. MacKenzie

Background: Suicide clusters at Cornell University and the Massachusetts Institute of Technology (MIT) prompted popular and expert speculation of suicide contagion. However, some clustering is to be expected in any random process. Aim: This work tested whether suicide clusters at these two universities differed significantly from those expected under a homogeneous Poisson process, in which suicides occur randomly and independently of one another. Method: Suicide dates were collected for MIT and Cornell for 1990–2012. The Anderson-Darling statistic was used to test the goodness-of-fit of the intervals between suicides to distribution expected under the Poisson process. Results: Suicides at MIT were consistent with the homogeneous Poisson process, while those at Cornell showed clustering inconsistent with such a process (p = .05). Conclusions: The Anderson-Darling test provides a statistically powerful means to identify suicide clustering in small samples. Practitioners can use this method to test for clustering in relevant communities. The difference in clustering behavior between the two institutions suggests that more institutions should be studied to determine the prevalence of suicide clustering in universities and its causes.


2020 ◽  
Vol 139 ◽  
pp. 93-102 ◽  
Author(s):  
MF Van Bressem ◽  
P Duignan ◽  
JA Raga ◽  
K Van Waerebeek ◽  
N Fraijia-Fernández ◽  
...  

Crassicauda spp. (Nematoda) infest the cranial sinuses of several odontocetes, causing diagnostic trabecular osteolytic lesions. We examined skulls of 77 Indian Ocean humpback dolphins Sousa plumbea and 69 Indo-Pacific bottlenose dolphins Tursiops aduncus, caught in bather-protecting nets off KwaZulu-Natal (KZN) from 1970-2017, and skulls of 6 S. plumbea stranded along the southern Cape coast in South Africa from 1963-2002. Prevalence of cranial crassicaudiasis was evaluated according to sex and cranial maturity. Overall, prevalence in S. plumbea and T. aduncus taken off KZN was 13 and 31.9%, respectively. Parasitosis variably affected 1 or more cranial bones (frontal, pterygoid, maxillary and sphenoid). No significant difference was found by gender for either species, allowing sexes to be pooled. However, there was a significant difference in lesion prevalence by age, with immature T. aduncus 4.6 times more likely affected than adults, while for S. plumbea, the difference was 6.5-fold. As severe osteolytic lesions are unlikely to heal without trace, we propose that infection is more likely to have a fatal outcome for immature dolphins, possibly because of incomplete bone development, lower immune competence in clearing parasites or an over-exuberant inflammatory response in concert with parasitic enzymatic erosion. Cranial osteolysis was not observed in mature males (18 S. plumbea, 21 T. aduncus), suggesting potential cohort-linked immune-mediated resistance to infestation. Crassicauda spp. may play a role in the natural mortality of S. plumbea and T. aduncus, but the pathogenesis and population level impact remain unknown.


1969 ◽  
Vol 62 (4_Suppla) ◽  
pp. S23-S35
Author(s):  
B.-A. Lamberg ◽  
O. P. Heinonen ◽  
K. Liewendahl ◽  
G. Kvist ◽  
M. Viherkoski ◽  
...  

ABSTRACT The distributions of 13 variables based on 10 laboratory tests measuring thyroid function were studied in euthyroid controls and in patients with toxic diffuse or toxic multinodular goitre. Density functions were fitted to the empirical data and the goodness of fit was evaluated by the use of the χ2-test. In a few instances there was a significant difference but the material available was in some respects too small to allow a very accurate estimation. The normal limits for each variable was defined by the 2.5 and 97.5 percentiles. It appears that in some instances these limits are too rigorous from the practical point of view. It is emphasized that the crossing point of the functions for euthyroid controls and hyperthyroid patients may be a better limit to use. In a preliminary analysis of the diagnostic efficiency the variables of total or free hormone concentration in the blood proved clearily superior to all other variables.


Sign in / Sign up

Export Citation Format

Share Document