scholarly journals The comparative pathomorphological evaluation of the mice-recipient's brain cell-tissue reactions by the intracerebral imlantation of syngeneic and allogeneic neural cells

2013 ◽  
Vol 59 (4) ◽  
pp. 40-50
Author(s):  
LD Liubych ◽  
◽  
VM Semenova ◽  
MI Lisianyĭ ◽  
◽  
...  
Author(s):  
Регина Барабаш ◽  
Regina Barabash ◽  
Игорь Макаров ◽  
Igorʹ Makarov

One of the main causes of the epidemic of tuberculosis in our country is the spread of strains of Mycobacterium tuberculosis, which are multiple and extensively drug-resistant. This serious drug resistance structure is explained by the wide circulation of strains of mycobacteria of the genetic family Beijing in the Russian Federation. Each of the stages of such an evolving infectious process is characterized by certain tissue and cellular reactions, shifts in metabolism and functional state of cells involved in the inflammatory process. The literature review covers the biological properties of this strain, the morphology of mycotuberculous inflammation from the position of cell-tissue reactions, the role of the vascular bed in this inflammation, and the study of the functional activity of cellular elements in the zone of tuberculous inflammation with the help of immunohistochemical study


2018 ◽  
Author(s):  
Giovanni A. Carosso ◽  
Leandros Boukas ◽  
Jonathan J. Augustin ◽  
Ha Nam Nguyen ◽  
Briana L. Winer ◽  
...  

AbstractChromatin modifiers act to coordinate gene expression changes critical to neuronal differentiation from neural stem/progenitor cells (NSPCs). Lysine-specific methyltransferase 2D (KMT2D) encodes a histone methyltransferase that promotes transcriptional activation, and is frequently mutated in cancers and in the majority (>70%) of patients diagnosed with the congenital, multisystem intellectual disability (ID) disorder Kabuki syndrome 1 (KS1). Critical roles for KMT2D are established in various non-neural tissues, but the effects of KMT2D loss in brain cell development have not been described. We conducted parallel studies of proliferation, differentiation, transcription, and chromatin profiling in KMT2D-deficient human and mouse models to define KMT2D-regulated functions in neurodevelopmental contexts, including adult-born hippocampal NSPCs in vivo and in vitro. We report cell-autonomous defects in proliferation, cell cycle, and survival, accompanied by early NSPC maturation in several KMT2D-deficient model systems. Transcriptional suppression in KMT2D-deficient cells indicated strong perturbation of hypoxia-responsive metabolism pathways. Functional experiments confirmed abnormalities of cellular hypoxia responses in KMT2D-deficient neural cells, and accelerated NSPC maturation in vivo. Together, our findings support a model in which loss of KMT2D function suppresses expression of oxygen-responsive gene programs important to neural progenitor maintenance, resulting in precocious neuronal differentiation in a mouse model of KS1.Graphical Abstract


2020 ◽  
Author(s):  
James M Gahan ◽  
Ivan U. Kouzel ◽  
Fabian Rentzsch

AbstractThe evolution of multicellularity was accompanied by the emergence of processes to regulate cell fate, identity and differentiation in a robust and faithful manner. Chromatin regulation has emerged as a key process in development and yet its contribution to the evolution of such processes is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in order to play cell/ tissue-specific functions. Using the cnidarian Nematostella vectensis, a model for basal metazoans, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that the expression of NvLsd1 is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to several distinct developmental abnormalities. Strikingly, NvLsd1 loss leads to the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, which we show to be the result of a cell-autonomous requirement for NvLsd1. Together this suggests that complex regulation of developmental processes by chromatin modifying proteins predates the split of the cnidarian and bilaterian lineages, approximately 600 million years ago, and may constitute an ancient feature of animal development.


1991 ◽  
Vol 66 (05) ◽  
pp. 559-564 ◽  
Author(s):  
Jerome M Teitel

SummaryAn experimental model incorporating cultured endothelial cells (EC) was used to study the "factor VIII bypassing" activity of prothrombin complex concentrates (PCC), a property exploited in the treatment of hemophiliacs with alloantibodies to factor VIII. Two PCC preparations were ineffective as stimuli of tissue factor expression by EC. However, incubation with a combination of PCC plus endotoxin (lipopolysaccharide, LPS) or tumor necrosis factor (TNF) induced much greater tissue factor expression than was seen in response to either substance alone. PCC expressed an additional direct procoagulant activity at the EC surface, which could not be attributed to either thrombin or factor Xa, and which was diminished by an anti-tissue factor antibody. Therefore factor VIIa, which was detectable in both PCC preparations, likely provided this additional direct procoagulant activity at the EC surface. We also excluded the possibility that coagulation proteases contained in or generated in the presence of PCC are protected from inactivation by AT III. Therefore, PCC can indirectly bypass factor VIII by enhancing induced endothelial tissue factor expression, and also possess direct procoagulant activity, probably mediated by factor VIIa.


1965 ◽  
Vol 13 (01) ◽  
pp. 035-046 ◽  
Author(s):  
R. L Henry

SummaryWhite blood cells can no longer be considered simple trapped inclusions within thrombi. Their numbers in thrombi relative to blood counts increase with time. They appear to come from the blood flowing past the thrombus. They appear to migrate by amoeboid movement into the thrombic mass. Polymorphonuclear neutrophils have been shown to be lytic to fibrin and other proteins and thus can contribute to thrombus dissolution. There is increasing evidence that neutrophils may impart important cytotrophic function to proliferating cells during thrombus organization. Eosinophils are known to carr profibrinolysin and will release this precursor at sites of fibrin deposition. Mononuclear leukocytes can transform into fibroblasts in tissue culture and I consider a thrombus an ideal tissue culture medium. All of these cells can contribute to thrombus dissolution simply by mechanical weakening of the mass by migration into it, releasing enzymes, and allowing blood flow to carry away pieces of the thrombus as emboli. I extend my perspective on thrombosis by considering these intravascular solids as cell tissue cultures rather than simple blood clots or platelet aggregates.


Author(s):  
L. M. Sosedova ◽  
V. S. Rukavishnikov ◽  
E. A. Titov

The results of a study on rats toxicity of nanoparticles of metals bismuth, gadolinium and silver encapsulated in a natural biopolymer matrix arabinogalactan are presented. When intake of nanocomposite of silver revealed the readiness of the brain cell to apoptosis. The effect of bismuth and gadolinium nanocomposites did not cause an increase in the process of programmed cell death.


Author(s):  
Parag A Pathade ◽  
Vinod A Bairagi ◽  
Yogesh S. Ahire ◽  
Neela M Bhatia

‘‘Proteomics’’, is the emerging technology leading to high-throughput identification and understanding of proteins. Proteomics is the protein equivalent of genomics and has captured the imagination of biomolecular scientists, worldwide. Because proteome reveals more accurately the dynamic state of a cell, tissue, or organism, much is expected from proteomics to indicate better disease markers for diagnosis and therapy monitoring. Proteomics is expected to play a major role in biomedical research, and it will have a significant impact on the development of diagnostics and therapeutics for cancer, heart ailments and infectious diseases, in future. Proteomics research leads to the identification of new protein markers for diagnostic purposes and novel molecular targets for drug discovery.  Though the potential is great, many challenges and issues remain to be solved, such as gene expression, peptides, generation of low abundant proteins, analytical tools, drug target discovery and cost. A systematic and efficient analysis of vast genomic and proteomic data sets is a major challenge for researchers, today. Nevertheless, proteomics is the groundwork for constructing and extracting useful comprehension to biomedical research. This review article covers some opportunities and challenges offered by proteomics.   


Sign in / Sign up

Export Citation Format

Share Document