Method of constructing the primary error matrix of the RT-32 radio telescope in an automated mode

2021 ◽  
Vol 27 (3) ◽  
pp. 66-75
Author(s):  
V.P. Vlasenko ◽  
◽  
V.M. Mamarev ◽  
V.V. Ozhynsky ◽  
O.M. Ulyanov ◽  
...  

2020 was the year of introduction of the Ukrainian new generation radio telescope RT-32 into the experimental operation. The test results of maser hydrogen and hydroxyl lines obtained during the experimental operation confirmed the correctness of the calculations and technological solutions of Ukrainian scientists and manufacturers Consortium. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to radio astronomical sources. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to astronomical radio sources. The latter is to be achieved by automating the processes of guidance error matrices formation and their integration during the observations. The formation of such a matrix presupposes taking into account the structural features of the antenna system and weather condition. The paper presents the results of geodetic measurements of the antenna system surface on different elevation angle, construction of the 3D model of the reflector. The method of constructing the error matrix, which at this stage of research provides the necessary simplicity of perception and interpretation of the obtained results by the human operator, is proposed. The results of the developed method verification using reference radio sources are given and the error matrices of elevation and azimuth pointing (dimension 81x81 elements) obtained with the use of said method are presented. The introduction of the results presented in the article into the radio telescope control system allowed increasing the accuracy of RT-32 radio telescope pointing in the C- and K- bands to the value of ~36″. This work partially was supported by Latvian Council of Science project "Joint Latvian-Ukrainian study of peculiar radio galaxy “Perseus A” in radio and optical bands. Nr: lzp-2020/2-0121".

Nature ◽  
1966 ◽  
Vol 210 (5031) ◽  
pp. 22-23 ◽  
Author(s):  
E. A. PARKER ◽  
B. ELSMORE ◽  
J. R. SHAKESHAFT

2017 ◽  
Vol 13 (S337) ◽  
pp. 346-347
Author(s):  
Phrudth Jaroenjittichai

AbstractSince the first light of the 2.4-m Thai National Telescope in 2013, Thailand foresees another great leap forward in astronomy. A project known as “Radio Astronomy Network and Geodesy for Development” (RANGD) by National Astronomical Research Institute of Thailand (NARIT) has been approved for year 2017-2021. A 40-m radio telescope has been planned to operate up to 115-GHz observation with prime-focus capability for low frequency and phased array feed receivers. The telescope’s first light is expected in late 2019 with a cryogenics K-band and L-band receivers. RFI environment at the site has been investigated and shown to be at reasonable level. A 13-m VGOS telescope is also included for geodetic applications. Early single-dish science will focus on time domain observations, such as pulsars and transients, outbursts and variability of maser and AGN sources.


1989 ◽  
Vol 8 ◽  
pp. 551-552
Author(s):  
R.D. Ekers

At cm wavelengths aperture synthesis radio-telescopes (arrays of linked antennas which synthesize an image of the sky with high angular resolution) are now becoming the dominant astronomical research tool. Major new facilities such as the VLA are in full operation, others such as the Australia Telescope are nearing completion and a number of telescopes designed to form images in real time have been converted to operate in the aperture synthesis mode (e.g. MOST, Bologna Cross). See Napier et al. (1983) for a review of modern synthesis telescopes. The high resolution, sensitivity and freedom from confusion have led the aperture synthesis telescopes into very diverse astronomical applications.


1980 ◽  
Vol 91 ◽  
pp. 403-403
Author(s):  
Ch. V. Sastry

Most observations of interplanetary scintillations of radio sources are made at frequencies around 80 MHz. These observations are limited to regions close to the sun, where the scintillations are maximum at this frequency. It is possible to extend these observations to the weakly scattering regions beyond 1 A.U. by making measurements at low frequencies. We have built a low frequency antenna system at Gauribidanur, India (Lat. 13° 36′ N and Long. 5 hrs. 10 min.), which can be used for this purpose. Although this system will not be dedicated to IPS, we intend to use it exclusively for solar wind observations during periods of interest.


1986 ◽  
Vol 109 ◽  
pp. 169-171
Author(s):  
P. M. Afanasieva ◽  
V. A. Fomin ◽  
Yu K. Zverev ◽  
M. G. Mingaliev ◽  
V. N. L'Vov ◽  
...  

The RATAN-600 radio telescope (Kaidanovsky & al. 1972) was designed for solving various problems of astrophysics and radiophysics (Pariisky & al. 1972, Gelfreikh & al. 1972). Because of its high resolving power and large collecting area, this instrument can be used to measure accurate positions of radio sources.


2019 ◽  
Vol 08 (03) ◽  
pp. 1950010
Author(s):  
Asif Rasha ◽  
Tim Natusch ◽  
Christophe Granet ◽  
Sergei Gulyaev

A number of countries have identified redundant large telecommunications antennas (TA) and indicated their intention to convert them into radio telescopes (RT). As the efficiency of a parabolic dish radio telescope depends on its surface quality and optical alignment, a careful assessment of these properties should be undertaken before conversion. Here, as a case study, we describe a laser scanning (LS) procedure we developed and used for the Warkworth 30[Formula: see text]m Cassegrain antenna. To investigate gravity-induced mechanical deformation of the antenna surfaces and structure, we conducted measurements at elevation angles ranging from 6 to 90 degrees. The ability of a laser scanner to survey its nominal [Formula: see text] steradian surroundings allows for simultaneous study of the main and subreflectors, readily permitting a dynamic investigation of variation of the telescope optics as elevation changes occur. In particular, the method we present here allows determination of the surface quality of both main and subreflectors, the displacement between centers of the reflectors, their relative rotations and focal length variation as a function of elevation angle. We discuss details of settings, measurements, data processing and analysis focusing on possible difficulties and pitfalls. In our case study, no significant elevation-dependent surface deformation of the reflectors was observed, with the overall standard deviation of the postfit residuals varying between 1.0 and 1.7[Formula: see text]mm as elevation angle changes from 90∘ to 6∘, respectively. We, therefore, conclude that in our case both the main reflector and the subreflector, as well as the telescope optics, remain unaffected by gravitational deformation within the accuracy of the measurements, a conclusion that can possibly be extended to the similar class of TA currently considered for conversion.


2019 ◽  
Vol 30 ◽  
pp. 05021
Author(s):  
Alexander Zhuravlev ◽  
Alexander Golovkov ◽  
Polina Terenteva ◽  
Victor Malyshev ◽  
Michail Shmyrin ◽  
...  

Ommidirectional in azimuth plane antennas with horizontal polarization are used in communication systems of McWILL standard, digital television systems of DVB-T2 standard, radio monitoring systems, semi-active ranging using the target illumination with the television broadcast signal, and many other cases. In many cases, radar and radio monitoring systems use phase methods to determine the azimuth and elevation angle of the target. To view all azimuthal angles, ring arrays consisting of omnidirectional emitters, usually also represented by ring arrays, are used. This paper studies the characteristics of an omnidirectional radiating element of electrically small horizontal dipole elements. An expression is derived that relates the radius of the dipole ring array to the number of dipoles and the variation of the resulting radiation pattern. The results are confirmed by experimental studies.


1967 ◽  
Vol 1 (1) ◽  
pp. 21-21 ◽  
Author(s):  
E. R. Hill

Survey type observations have been made with the Parkes radio-telescope of 4 galactic radio sources having either a non-thermal radio spectrum, or exhibiting shell structure in their emitting regions. Observations were made at a wavelength of 11 cm using the Parkes radiotelescope where the beamwidth is about 7.5 min.arc.


1988 ◽  
Vol 108 ◽  
pp. 458-459
Author(s):  
T. Daishido ◽  
K. Asuma ◽  
S. Inoue ◽  
K. Nishibori ◽  
H. Ohara ◽  
...  

Zwicky started extragalactic supernovae patrol using 10 inch Schmidt camera about fifty years ago. After that the research of supernovae was accelerated, because the wide view of the Schmidt camera made it possible to watch large field of the sky. The key technology of the Schmidt camera was its sophisticated optical system.Anticipated next supernova in our Galaxy may be undetectable by the optical instrument due to the Galactic extinction. However, supernovae are now known to be intense radio sources after a year or so of the explosion. Even if the positions are beyond the Galactic center, the radio supernova could be observed using middle size radio telescope.


Sign in / Sign up

Export Citation Format

Share Document