scholarly journals Determination of roof support parameters for overworking roadway during adjacent seams at extraction in the conditions of Western Donbas mines

2015 ◽  
Vol 9 (1) ◽  
pp. 35-42
Author(s):  
O.V Vivcharenko ◽  
◽  
V.V Ruskykh ◽  
V.O Sotskov ◽  
◽  
...  
Keyword(s):  
2017 ◽  
Vol 62 (1) ◽  
pp. 177-188
Author(s):  
Józef Markowicz ◽  
Sylwester Rajwa ◽  
Stanisław Szweda

Abstract The problem of cooperation of powered roof support with the floor in the aspect of shaping its design is presented. From the analysis of the simplifying assumptions considered so far in the methods for determination of roof support’s base pressure on the floor, it results that they are not satisfied in the case of bases of the catamaran type, commonly used in currently manufactured roof supports. Model of cooperation of the base lying on the floor, prepared by the finite elements method is described and the results of computer simulation of the base action on the floor are given. Considering the results of numerical analyses, the factors influencing the pressure distribution of the base on the floor as well as its maximal value, have been identified.


2016 ◽  
Vol 61 (4) ◽  
pp. 937-948
Author(s):  
Józef Markowicz ◽  
Sylwester Rajwa ◽  
Stanisław Szweda

Abstract Results of experimental tests aiming at determination of base pressure on the floor, carried out within “Geosoft” project, are presented. The tests included stand tests carried out with use of unique measuring instrumentation and special hydraulic cushion as well as tests of load of roof support set to load in operating longwall panel. The measurement results confirmed the necessity to consider the 3D model of cooperation of base and floor. Factors having impact on distribution of base pressure on the floor and its maximal value were identified, taking into account the test results.


2018 ◽  
Vol 29 ◽  
pp. 00007 ◽  
Author(s):  
Dawid Szurgacz

The article discusses basic functions of a powered roof support in a longwall unit. The support function is to provide safety by protecting mine workings against uncontrolled falling of rocks. The subject of the research includes the measures to shorten the time of roof support shifting. The roof support is adapted to transfer, in hazard conditions of rock mass tremors, dynamic loads caused by mining exploitation. The article presents preliminary research results on the time reduction of the unit advance to increase the extraction process and thus reduce operating costs. Conducted stand tests showed the ability to increase the flow for 3/2-way valve cartridges. The level of fluid flowing through the cartridges is adequate to control individual actuators.


2020 ◽  
pp. 466-478

Release valves are commonly used to protect hydraulic legs against overload caused by rock bursts or bumps. Due to an essential role in ensuring safety in the working, an application of a release valve is conditioned by a positive yield test results of a leg equipped with such a valve. A method of leg yield testing, used in Poland, enables a complex determination of an impact of not only a release valve but also of the parameters of the hydraulic leg, determining its stiffness such as for example a volume of the under-the-piston space, which has an impact on an observed pressure increase. The subject of this publication covers cognitive tests oriented onto a determination of an impact of a release valve exclusively on the pressure changes observed in the leg. The results of the efficiency tests of spring valves (Stoiński, 2018) on a rammer are discussed. The difference between the maximum pressure in the under-piston area of the leg with the release valve and the maximum pressure generated by the same dynamic load in the leg without this valve was the measure of the valve operation's effectiveness. Dynamic load, realized on a rammer, is characterized by a longer increase time than in the case of dynamic load acting on a powered roof support unit from the floor. The time process of the force in the leg is then characterized by a short load rising time – tn, large load increment factor – Kd and the average load growth rate –wp,n. Referring to that aspect, the features of a release valve were analyzed in relation to the parameters characterizing dynamic load acting on a powered roof support unit from the floor. Parameters characterizing the effectiveness of the release valve, i.e. change in the leg load increment index –Kd and change in the rate of load increase –wpn were defined. The test stand for generating the load of such parameters using the explosive method is described. Comparison of effects of the dynamic load generated by firing the same mass and the same type of explosive on a hydraulic leg with a release valve and the leg without this valve was the test objective. The effectiveness of the spring valve and two gas valves are analyzed. It was found that despite a very short load rising time, the release valve reduces the load acting on the leg. The positive values of the Kd and wp,n indices are the evidence.


2017 ◽  
Vol 62 (4) ◽  
pp. 689-704 ◽  
Author(s):  
Marek Jaszczuk ◽  
Arkadiusz Pawlikowski

Abstract The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall’s height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam’s reaction may be estimated using the dependence (2). The vertical component of the goafs’ reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs’ reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).


2019 ◽  
Vol 55 (1) ◽  
pp. 23-30 ◽  
Author(s):  
M. E. Yetkin ◽  
F. Şimşir
Keyword(s):  

1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


Sign in / Sign up

Export Citation Format

Share Document